Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.07710
Cited By
The Pitfalls of Simplicity Bias in Neural Networks
13 June 2020
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Pitfalls of Simplicity Bias in Neural Networks"
50 / 84 papers shown
Title
Fine-Grained Bias Exploration and Mitigation for Group-Robust Classification
Miaoyun Zhao
Qiang Zhang
C. Li
48
0
0
11 May 2025
Severing Spurious Correlations with Data Pruning
Varun Mulchandani
Jung-Eun Kim
347
0
0
24 Mar 2025
Spurious Correlations in High Dimensional Regression: The Roles of Regularization, Simplicity Bias and Over-Parameterization
Simone Bombari
Marco Mondelli
163
0
0
03 Feb 2025
Refining Skewed Perceptions in Vision-Language Models through Visual Representations
Haocheng Dai
Sarang Joshi
VLM
88
0
0
03 Jan 2025
The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations
Chenyu You
Haocheng Dai
Yifei Min
Jasjeet Sekhon
S. Joshi
James S. Duncan
79
3
0
01 Jan 2025
Aligning Generalisation Between Humans and Machines
Filip Ilievski
Barbara Hammer
F. V. Harmelen
Benjamin Paassen
S. Saralajew
...
Vered Shwartz
Gabriella Skitalinskaya
Clemens Stachl
Gido M. van de Ven
T. Villmann
176
1
0
23 Nov 2024
Geometric Inductive Biases of Deep Networks: The Role of Data and Architecture
Sajad Movahedi
Antonio Orvieto
Seyed-Mohsen Moosavi-Dezfooli
AI4CE
AAML
362
0
0
15 Oct 2024
SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning
Hojoon Lee
Dongyoon Hwang
Donghu Kim
Hyunseung Kim
Jun Jet Tai
K. Subramanian
Peter R. Wurman
Jaegul Choo
Peter Stone
Takuma Seno
OffRL
98
12
0
13 Oct 2024
Bias of Stochastic Gradient Descent or the Architecture: Disentangling the Effects of Overparameterization of Neural Networks
Amit Peleg
Matthias Hein
39
0
0
04 Jul 2024
Feature contamination: Neural networks learn uncorrelated features and fail to generalize
Tianren Zhang
Chujie Zhao
Guanyu Chen
Yizhou Jiang
Feng Chen
OOD
MLT
OODD
134
4
0
05 Jun 2024
When does compositional structure yield compositional generalization? A kernel theory
Samuel Lippl
Kim Stachenfeld
NAI
CoGe
115
8
0
26 May 2024
Neural Redshift: Random Networks are not Random Functions
Damien Teney
A. Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad
112
22
0
04 Mar 2024
What shapes feature representations? Exploring datasets, architectures, and training
Katherine L. Hermann
Andrew Kyle Lampinen
OOD
37
156
0
22 Jun 2020
Evaluating Models' Local Decision Boundaries via Contrast Sets
Matt Gardner
Yoav Artzi
Victoria Basmova
Jonathan Berant
Ben Bogin
...
Sanjay Subramanian
Reut Tsarfaty
Eric Wallace
Ally Zhang
Ben Zhou
ELM
51
84
0
06 Apr 2020
Hold me tight! Influence of discriminative features on deep network boundaries
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
22
50
0
15 Feb 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
56
332
0
11 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
118
1,167
0
12 Jan 2020
Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging
Luke Oakden-Rayner
Jared A. Dunnmon
G. Carneiro
Christopher Ré
OOD
48
380
0
27 Sep 2019
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
153
1,454
0
16 Jul 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
Jason D. Lee
Daniel Soudry
Nathan Srebro
51
358
0
13 Jun 2019
Intriguing properties of adversarial training at scale
Cihang Xie
Alan Yuille
AAML
35
68
0
10 Jun 2019
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
102
717
0
07 Jun 2019
Learning Robust Global Representations by Penalizing Local Predictive Power
Haohan Wang
Songwei Ge
Eric Xing
Zachary Chase Lipton
OOD
73
944
0
29 May 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
115
242
0
28 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
68
1,825
0
06 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
97
1,238
0
29 Apr 2019
GradMask: Reduce Overfitting by Regularizing Saliency
B. Simpson
Francis Dutil
Yoshua Bengio
Joseph Paul Cohen
MedIm
33
24
0
16 Apr 2019
Unrestricted Adversarial Examples via Semantic Manipulation
Anand Bhattad
Min Jin Chong
Kaizhao Liang
Yangqiu Song
David A. Forsyth
AAML
46
151
0
12 Apr 2019
Learning Robust Representations by Projecting Superficial Statistics Out
Haohan Wang
Zexue He
Zachary Chase Lipton
Eric Xing
OOD
48
234
0
02 Mar 2019
The Odds are Odd: A Statistical Test for Detecting Adversarial Examples
Kevin Roth
Yannic Kilcher
Thomas Hofmann
AAML
36
175
0
13 Feb 2019
Uniform convergence may be unable to explain generalization in deep learning
Vaishnavh Nagarajan
J. Zico Kolter
MoMe
AI4CE
39
314
0
13 Feb 2019
Computational Limitations in Robust Classification and Win-Win Results
Akshay Degwekar
Preetum Nakkiran
Vinod Vaikuntanathan
20
38
0
04 Feb 2019
Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference
R. Thomas McCoy
Ellie Pavlick
Tal Linzen
94
1,226
0
04 Feb 2019
Improving Adversarial Robustness of Ensembles with Diversity Training
Sanjay Kariyappa
Moinuddin K. Qureshi
AAML
FedML
28
134
0
28 Jan 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
50
435
0
25 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
92
2,525
0
24 Jan 2019
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
78
823
0
19 Dec 2018
Feature Denoising for Improving Adversarial Robustness
Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
69
907
0
09 Dec 2018
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
65
2,647
0
29 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
43
166
0
01 Nov 2018
Are adversarial examples inevitable?
Ali Shafahi
Wenjie Huang
Christoph Studer
Soheil Feizi
Tom Goldstein
SILM
44
282
0
06 Sep 2018
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
MDE
40
408
0
01 Jun 2018
Adversarial examples from computational constraints
Sébastien Bubeck
Eric Price
Ilya P. Razenshteyn
AAML
80
230
0
25 May 2018
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLT
AI4CE
38
231
0
22 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
109
786
0
30 Apr 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
61
855
0
18 Apr 2018
Annotation Artifacts in Natural Language Inference Data
Suchin Gururangan
Swabha Swayamdipta
Omer Levy
Roy Schwartz
Samuel R. Bowman
Noah A. Smith
78
1,167
0
06 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
145
3,171
0
01 Feb 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
103
19,124
0
13 Jan 2018
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
63
547
0
18 Dec 2017
1
2
Next