Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.07340
Cited By
Fourier Sparse Leverage Scores and Approximate Kernel Learning
12 June 2020
T. Erdélyi
Cameron Musco
Christopher Musco
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fourier Sparse Leverage Scores and Approximate Kernel Learning"
24 / 24 papers shown
Title
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Christopher Musco
R. Teal Witter
FAtt
FedML
TDI
77
3
0
02 Oct 2024
The Statistical Cost of Robust Kernel Hyperparameter Tuning
R. A. Meyer
Christopher Musco
29
2
0
14 Jun 2020
Random Fourier Features via Fast Surrogate Leverage Weighted Sampling
Fanghui Liu
Xiaolin Huang
Yudong Chen
Jie Yang
Johan A. K. Suykens
41
21
0
20 Nov 2019
Nyström landmark sampling and regularized Christoffel functions
Michaël Fanuel
J. Schreurs
Johan A. K. Suykens
50
11
0
29 May 2019
Sample Efficient Toeplitz Covariance Estimation
Yonina C. Eldar
Jerry Li
Cameron Musco
Christopher Musco
30
13
0
14 May 2019
On Sampling Random Features From Empirical Leverage Scores: Implementation and Theoretical Guarantees
Shahin Shahrampour
Soheil Kolouri
22
10
0
20 Mar 2019
A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
31
48
0
20 Dec 2018
Relating Leverage Scores and Density using Regularized Christoffel Functions
Edouard Pauwels
Francis R. Bach
Jean-Philippe Vert
45
21
0
21 May 2018
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
54
156
0
26 Apr 2018
Leveraged volume sampling for linear regression
Michal Derezinski
Manfred K. Warmuth
Daniel J. Hsu
30
58
0
19 Feb 2018
Active Regression via Linear-Sample Sparsification
Xue Chen
Eric Price
90
62
0
27 Nov 2017
Leverage Score Sampling for Faster Accelerated Regression and ERM
Naman Agarwal
Sham Kakade
Rahul Kidambi
Y. Lee
Praneeth Netrapalli
Aaron Sidford
95
21
0
22 Nov 2017
Optimal weighted least-squares methods
A. Cohen
G. Migliorati
29
197
0
01 Aug 2016
Relative Error Embeddings for the Gaussian Kernel Distance
Di Chen
J. M. Phillips
26
15
0
17 Feb 2016
Input Sparsity Time Low-Rank Approximation via Ridge Leverage Score Sampling
Michael B. Cohen
Cameron Musco
Christopher Musco
65
143
0
23 Nov 2015
A statistical perspective of sampling scores for linear regression
Siheng Chen
R. Varma
Aarti Singh
J. Kovacevic
22
13
0
21 Jul 2015
Optimal approximate matrix product in terms of stable rank
Michael B. Cohen
Jelani Nelson
David P. Woodruff
44
132
0
08 Jul 2015
An Introduction to Matrix Concentration Inequalities
J. Tropp
70
1,139
0
07 Jan 2015
Coherence Motivated Sampling and Convergence Analysis of Least-Squares Polynomial Chaos Regression
Jerrad Hampton
Alireza Doostan
28
146
0
07 Oct 2014
Uniform Sampling for Matrix Approximation
Michael B. Cohen
Y. Lee
Cameron Musco
Christopher Musco
Richard Peng
Aaron Sidford
44
219
0
21 Aug 2014
A Statistical Perspective on Algorithmic Leveraging
Ping Ma
Michael W. Mahoney
Bin Yu
42
347
0
23 Jun 2013
Revisiting the Nystrom Method for Improved Large-Scale Machine Learning
Alex Gittens
Michael W. Mahoney
88
414
0
07 Mar 2013
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
53
604
0
18 Feb 2013
Fast approximation of matrix coherence and statistical leverage
P. Drineas
M. Magdon-Ismail
Michael W. Mahoney
David P. Woodruff
127
531
0
18 Sep 2011
1