Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.07322
Cited By
Evaluation of Neural Architectures Trained with Square Loss vs Cross-Entropy in Classification Tasks
12 June 2020
Like Hui
M. Belkin
UQCV
AAML
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Evaluation of Neural Architectures Trained with Square Loss vs Cross-Entropy in Classification Tasks"
45 / 45 papers shown
Title
Super-fast rates of convergence for Neural Networks Classifiers under the Hard Margin Condition
Nathanael Tepakbong
Ding-Xuan Zhou
Xiang Zhou
33
0
0
13 May 2025
Continuous Visual Autoregressive Generation via Score Maximization
Chenze Shao
Fandong Meng
Jie Zhou
DiffM
26
0
0
12 May 2025
The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations
Chenyu You
Haocheng Dai
Yifei Min
Jasjeet Sekhon
S. Joshi
James S. Duncan
60
2
0
01 Jan 2025
Does SGD really happen in tiny subspaces?
Minhak Song
Kwangjun Ahn
Chulhee Yun
66
4
1
25 May 2024
Towards Certification of Uncertainty Calibration under Adversarial Attacks
Cornelius Emde
Francesco Pinto
Thomas Lukasiewicz
Philip H. S. Torr
Adel Bibi
AAML
42
0
0
22 May 2024
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
20
7
0
15 Jul 2023
A Neural Collapse Perspective on Feature Evolution in Graph Neural Networks
Vignesh Kothapalli
Tom Tirer
Joan Bruna
34
10
0
04 Jul 2023
Dual Focal Loss for Calibration
Linwei Tao
Minjing Dong
Chang Xu
UQCV
37
26
0
23 May 2023
Fairness Uncertainty Quantification: How certain are you that the model is fair?
Abhishek Roy
P. Mohapatra
14
5
0
27 Apr 2023
Automatic Gradient Descent: Deep Learning without Hyperparameters
Jeremy Bernstein
Chris Mingard
Kevin Huang
Navid Azizan
Yisong Yue
ODL
16
17
0
11 Apr 2023
General Loss Functions Lead to (Approximate) Interpolation in High Dimensions
Kuo-Wei Lai
Vidya Muthukumar
18
5
0
13 Mar 2023
Generalizing and Decoupling Neural Collapse via Hyperspherical Uniformity Gap
Weiyang Liu
L. Yu
Adrian Weller
Bernhard Schölkopf
32
17
0
11 Mar 2023
Calibrating a Deep Neural Network with Its Predecessors
Linwei Tao
Minjing Dong
Daochang Liu
Changming Sun
Chang Xu
BDL
UQCV
6
5
0
13 Feb 2023
Cut your Losses with Squentropy
Like Hui
M. Belkin
S. Wright
UQCV
13
8
0
08 Feb 2023
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
38
13
0
01 Feb 2023
Supervision Complexity and its Role in Knowledge Distillation
Hrayr Harutyunyan
A. S. Rawat
A. Menon
Seungyeon Kim
Surinder Kumar
22
12
0
28 Jan 2023
Annealing Double-Head: An Architecture for Online Calibration of Deep Neural Networks
Erdong Guo
D. Draper
Maria de Iorio
35
0
0
27 Dec 2022
Principled and Efficient Transfer Learning of Deep Models via Neural Collapse
Xiao Li
Sheng Liu
Jin-li Zhou
Xin Lu
C. Fernandez‐Granda
Zhihui Zhu
Q. Qu
AAML
23
18
0
23 Dec 2022
Perturbation Analysis of Neural Collapse
Tom Tirer
Haoxiang Huang
Jonathan Niles-Weed
AAML
30
23
0
29 Oct 2022
The Fisher-Rao Loss for Learning under Label Noise
Henrique K. Miyamoto
Fábio C. C. Meneghetti
Sueli I. R. Costa
NoLa
18
5
0
28 Oct 2022
Towards Understanding GD with Hard and Conjugate Pseudo-labels for Test-Time Adaptation
Jun-Kun Wang
Andre Wibisono
29
7
0
18 Oct 2022
Are All Losses Created Equal: A Neural Collapse Perspective
Jinxin Zhou
Chong You
Xiao Li
Kangning Liu
Sheng Liu
Qing Qu
Zhihui Zhu
30
58
0
04 Oct 2022
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
38
4
0
01 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
26
4
0
30 Sep 2022
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
40
5
0
15 Jul 2022
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
28
20
0
25 Jun 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
21
71
0
08 Jun 2022
Standalone Neural ODEs with Sensitivity Analysis
Rym Jaroudi
Lukáš Malý
Gabriel Eilertsen
B. Johansson
Jonas Unger
George Baravdish
21
0
0
27 May 2022
Investigating Generalization by Controlling Normalized Margin
Alexander R. Farhang
Jeremy Bernstein
Kushal Tirumala
Yang Liu
Yisong Yue
25
6
0
08 May 2022
The Effects of Regularization and Data Augmentation are Class Dependent
Randall Balestriero
Léon Bottou
Yann LeCun
28
94
0
07 Apr 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurélien Lucchi
44
7
0
07 Mar 2022
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
Jinxin Zhou
Xiao Li
Tian Ding
Chong You
Qing Qu
Zhihui Zhu
22
97
0
02 Mar 2022
On the Regularization of Autoencoders
Harald Steck
Dario Garcia-Garcia
SSL
AI4CE
27
4
0
21 Oct 2021
slimTrain -- A Stochastic Approximation Method for Training Separable Deep Neural Networks
Elizabeth Newman
Julianne Chung
Matthias Chung
Lars Ruthotto
39
6
0
28 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
Memorization in Deep Neural Networks: Does the Loss Function matter?
Deep Patel
P. Sastry
TDI
13
8
0
21 Jul 2021
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation
Haoxiang Wang
Han Zhao
Bo-wen Li
29
88
0
16 Jun 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
28
29
0
01 May 2021
Understanding and Mitigating Accuracy Disparity in Regression
Jianfeng Chi
Yuan Tian
Geoffrey J. Gordon
Han Zhao
16
25
0
24 Feb 2021
Modeling Dynamic User Interests: A Neural Matrix Factorization Approach
Paramveer S. Dhillon
Sinan Aral
AI4TS
17
19
0
12 Feb 2021
Estimating informativeness of samples with Smooth Unique Information
Hrayr Harutyunyan
Alessandro Achille
Giovanni Paolini
Orchid Majumder
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
16
24
0
17 Jan 2021
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
45
257
0
18 Nov 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
36
148
0
16 May 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,956
0
20 Apr 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1