ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.07057
  4. Cited By
Linear Time Sinkhorn Divergences using Positive Features

Linear Time Sinkhorn Divergences using Positive Features

12 June 2020
M. Scetbon
Marco Cuturi
ArXivPDFHTML

Papers citing "Linear Time Sinkhorn Divergences using Positive Features"

5 / 5 papers shown
Title
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
39
4
0
20 Jan 2024
Efficient Approximation of Gromov-Wasserstein Distance Using Importance
  Sparsification
Efficient Approximation of Gromov-Wasserstein Distance Using Importance Sparsification
Mengyu Li
Jun Yu
Hongteng Xu
Cheng Meng
28
14
0
26 May 2022
Low-Rank Sinkhorn Factorization
Low-Rank Sinkhorn Factorization
M. Scetbon
Marco Cuturi
Gabriel Peyré
26
59
0
08 Mar 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
43
66
0
15 Feb 2021
Multi-marginal optimal transport and probabilistic graphical models
Multi-marginal optimal transport and probabilistic graphical models
Isabel Haasler
Rahul Singh
Qinsheng Zhang
Johan Karlsson
Yongxin Chen
OT
25
41
0
25 Jun 2020
1