ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06868
  4. Cited By
SegNBDT: Visual Decision Rules for Segmentation

SegNBDT: Visual Decision Rules for Segmentation

11 June 2020
Alvin Wan
Daniel Ho
You Song
Henk Tillman
Sarah Adel Bargal
Joseph E. Gonzalez
    SSeg
ArXivPDFHTML

Papers citing "SegNBDT: Visual Decision Rules for Segmentation"

19 / 19 papers shown
Title
NBDT: Neural-Backed Decision Trees
NBDT: Neural-Backed Decision Trees
Alvin Wan
Lisa Dunlap
Daniel Ho
Jihan Yin
Scott Lee
Henry Jin
Suzanne Petryk
Sarah Adel Bargal
Joseph E. Gonzalez
50
103
0
01 Apr 2020
Grid Saliency for Context Explanations of Semantic Segmentation
Grid Saliency for Context Explanations of Semantic Segmentation
Lukas Hoyer
Mauricio Muñoz
P. Katiyar
Anna Khoreva
Volker Fischer
FAtt
125
49
0
30 Jul 2019
Visualizing the decision-making process in deep neural decision forest
Visualizing the decision-making process in deep neural decision forest
Shichao Li
K. Cheng
FAtt
33
6
0
19 Apr 2019
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
170
1,169
0
19 Jun 2018
Interpreting CNNs via Decision Trees
Interpreting CNNs via Decision Trees
Quanshi Zhang
Yu Yang
Ying Nian Wu
Song-Chun Zhu
FAtt
67
323
0
01 Feb 2018
Look into Person: Self-supervised Structure-sensitive Learning and A New
  Benchmark for Human Parsing
Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing
Ke Gong
Xiaodan Liang
Dongyu Zhang
Xiaohui Shen
Liang Lin
SSL
44
476
0
16 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
160
5,968
0
04 Mar 2017
Understanding the Effective Receptive Field in Deep Convolutional Neural
  Networks
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
Wenjie Luo
Yujia Li
R. Urtasun
R. Zemel
HAI
81
1,793
0
15 Jan 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
246
19,929
0
07 Oct 2016
Top-down Neural Attention by Excitation Backprop
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
79
947
0
01 Aug 2016
Network of Experts for Large-Scale Image Categorization
Network of Experts for Large-Scale Image Categorization
Karim Ahmed
M. H. Baig
Lorenzo Torresani
65
126
0
20 Apr 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
875
11,587
0
06 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
854
16,891
0
16 Feb 2016
Mapping Auto-context Decision Forests to Deep ConvNets for Semantic
  Segmentation
Mapping Auto-context Decision Forests to Deep ConvNets for Semantic Segmentation
D. L. Richmond
Dagmar Kainmüller
M. Yang
E. Myers
Carsten Rother
SSeg
96
14
0
27 Jul 2015
Image Segmentation Using Hierarchical Merge Tree
Image Segmentation Using Hierarchical Merge Tree
Ting Liu
Mojtaba Seyedhosseini
Tolga Tasdizen
34
47
0
24 May 2015
Deep Hierarchical Parsing for Semantic Segmentation
Deep Hierarchical Parsing for Semantic Segmentation
Abhishek Sharma
Oncel Tuzel
David Jacobs
53
116
0
09 Mar 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
214
4,665
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
244
7,279
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
441
15,861
0
12 Nov 2013
1