Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.06562
Cited By
Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory
11 June 2020
C. Tennant
A. Carpenter
T. Powers
A. Solopova
Lasitha Vidyaratne
Khan M. Iftekharuddin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory"
7 / 7 papers shown
Title
A Two-Stage Machine Learning-Aided Approach for Quench Identification at the European XFEL
Lynda Boukela
Annika Eichler
Julien Branlard
N. Z. Jomhari
13
1
0
11 Jul 2024
Anomaly Detection of Particle Orbit in Accelerator using LSTM Deep Learning Technology
Zhiyuan Chen
Wei Lu
Radhika Bhong
Yimin Hu
Brian Freeman
Adam Carpenter
24
1
0
28 Jan 2024
Explainable Machine Learning for Breakdown Prediction in High Gradient RF Cavities
Christoph Obermair
T. Cartier-Michaud
A. Apollonio
W. Millar
L. Felsberger
...
W. Wuensch
N. C. Lasheras
M. Boronat
Franz Pernkopf
G. Burt
19
10
0
10 Feb 2022
Machine Learning in Nuclear Physics
A. Boehnlein
M. Diefenthaler
C. Fanelli
M. Hjorth-Jensen
T. Horn
...
M. Schram
A. Scheinker
Michael S. Smith
Xin-Nian Wang
Veronique Ziegler
AI4CE
37
41
0
04 Dec 2021
Uncertainty aware anomaly detection to predict errant beam pulses in the SNS accelerator
S. Javed
Pradeep Ramuhalli
Arif Mahmood
Yigit Yucesan
Alexander Zhukov
M. Schram
Kishansingh Rajput
Torri Jeske
32
15
0
22 Oct 2021
High-fidelity Prediction of Megapixel Longitudinal Phase-space Images of Electron Beams using Encoder-Decoder Neural Networks
Jun Zhu
Ye Chen
F. Brinker
W. Decking
S. Tomin
H. Schlarb
AI4CE
21
25
0
25 Jan 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1