Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.06098
Cited By
Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification
10 June 2020
Francesca Mignacco
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification"
20 / 20 papers shown
Title
Analytic theory of dropout regularization
Francesco Mori
Francesca Mignacco
34
0
0
12 May 2025
Generalization through variance: how noise shapes inductive biases in diffusion models
John J. Vastola
DiffM
188
2
0
16 Apr 2025
Make Haste Slowly: A Theory of Emergent Structured Mixed Selectivity in Feature Learning ReLU Networks
Devon Jarvis
Richard Klein
Benjamin Rosman
Andrew M. Saxe
MLT
66
1
0
08 Mar 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
Cengiz Pehlevan
AI4CE
64
1
0
04 Feb 2025
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
Cengiz Pehlevan
57
12
0
26 Sep 2024
Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron
Christian Schmid
James M. Murray
40
0
0
05 Sep 2024
Infinite Limits of Multi-head Transformer Dynamics
Blake Bordelon
Hamza Tahir Chaudhry
Cengiz Pehlevan
AI4CE
47
9
0
24 May 2024
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
41
4
0
12 Mar 2024
Two-Stage Classifier for Campaign Negativity Detection using Axis Embeddings: A Case Study on Tweets of Political Users during 2021 Presidential Election in Iran
Fatemeh Rajabi
Ali Mohades
19
0
0
31 Oct 2023
Spectral alignment of stochastic gradient descent for high-dimensional classification tasks
Gerard Ben Arous
Reza Gheissari
Jiaoyang Huang
Aukosh Jagannath
35
14
0
04 Oct 2023
Connecting NTK and NNGP: A Unified Theoretical Framework for Wide Neural Network Learning Dynamics
Yehonatan Avidan
Qianyi Li
H. Sompolinsky
60
8
0
08 Sep 2023
Theory of coupled neuronal-synaptic dynamics
David G. Clark
L. F. Abbott
24
18
0
17 Feb 2023
The Underlying Correlated Dynamics in Neural Training
Rotem Turjeman
Tom Berkov
I. Cohen
Guy Gilboa
27
3
0
18 Dec 2022
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
Rigorous dynamical mean field theory for stochastic gradient descent methods
Cédric Gerbelot
Emanuele Troiani
Francesca Mignacco
Florent Krzakala
Lenka Zdeborova
38
26
0
12 Oct 2022
Sudakov-Fernique post-AMP, and a new proof of the local convexity of the TAP free energy
Michael Celentano
37
20
0
19 Aug 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
40
78
0
19 May 2022
Optimal learning rate schedules in high-dimensional non-convex optimization problems
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
16
7
0
09 Feb 2022
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
37
13
0
22 Oct 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
1