ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.06068
  4. Cited By
Variance reduction for Random Coordinate Descent-Langevin Monte Carlo

Variance reduction for Random Coordinate Descent-Langevin Monte Carlo

10 June 2020
Zhiyan Ding
Qin Li
    BDL
ArXivPDFHTML

Papers citing "Variance reduction for Random Coordinate Descent-Langevin Monte Carlo"

4 / 4 papers shown
Title
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
Wenlong Mou
Yian Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
DiffM
29
84
0
28 Aug 2019
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
110
1,817
0
01 Jul 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
88
906
0
17 Feb 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
253
1,246
0
10 Sep 2013
1