ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.05976
  4. Cited By
Composite Logconcave Sampling with a Restricted Gaussian Oracle

Composite Logconcave Sampling with a Restricted Gaussian Oracle

10 June 2020
Ruoqi Shen
Kevin Tian
Y. Lee
ArXiv (abs)PDFHTML

Papers citing "Composite Logconcave Sampling with a Restricted Gaussian Oracle"

18 / 18 papers shown
Title
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized
  Hamiltonian Monte Carlo
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo
Y. Lee
Ruoqi Shen
Kevin Tian
58
37
0
10 Feb 2020
Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry
Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry
Andre Wibisono
130
49
0
04 Nov 2019
An Efficient Sampling Algorithm for Non-smooth Composite Potentials
An Efficient Sampling Algorithm for Non-smooth Composite Potentials
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
45
24
0
01 Oct 2019
The Randomized Midpoint Method for Log-Concave Sampling
The Randomized Midpoint Method for Log-Concave Sampling
Ruoqi Shen
Y. Lee
103
118
0
12 Sep 2019
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
Wenlong Mou
Yian Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
DiffM
51
85
0
28 Aug 2019
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of
  multi-step gradients
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients
Yuansi Chen
Raaz Dwivedi
Martin J. Wainwright
Bin Yu
51
101
0
29 May 2019
Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly
  Logconcave Distributions
Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions
Zongchen Chen
Santosh Vempala
75
65
0
07 May 2019
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave
  Densities
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities
Y. Lee
Zhao Song
Santosh Vempala
78
37
0
15 Dec 2018
On sampling from a log-concave density using kinetic Langevin diffusions
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
75
158
0
24 Jul 2018
Mirrored Langevin Dynamics
Mirrored Langevin Dynamics
Ya-Ping Hsieh
Ali Kavis
Paul Rolland
Volkan Cevher
76
85
0
27 Feb 2018
Analysis of Langevin Monte Carlo via convex optimization
Analysis of Langevin Monte Carlo via convex optimization
Alain Durmus
Szymon Majewski
B. Miasojedow
71
222
0
26 Feb 2018
Langevin Monte Carlo and JKO splitting
Langevin Monte Carlo and JKO splitting
Espen Bernton
60
80
0
23 Feb 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
66
255
0
08 Jan 2018
Underdamped Langevin MCMC: A non-asymptotic analysis
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
92
301
0
12 Jul 2017
High-dimensional Bayesian inference via the Unadjusted Langevin
  Algorithm
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
105
357
0
05 May 2016
Sampling from a log-concave distribution with Projected Langevin Monte
  Carlo
Sampling from a log-concave distribution with Projected Langevin Monte Carlo
Sébastien Bubeck
Ronen Eldan
Joseph Lehec
76
140
0
09 Jul 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
86
516
0
23 Dec 2014
Proximal Markov chain Monte Carlo algorithms
Proximal Markov chain Monte Carlo algorithms
Marcelo Pereyra
85
178
0
02 Jun 2013
1