ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.05889
  4. Cited By
Benchmarking a $(μ+λ)$ Genetic Algorithm with Configurable
  Crossover Probability

Benchmarking a (μ+λ)(μ+λ)(μ+λ) Genetic Algorithm with Configurable Crossover Probability

10 June 2020
Furong Ye
Hao Wang
Carola Doerr
Thomas Bäck
ArXiv (abs)PDFHTML

Papers citing "Benchmarking a $(μ+λ)$ Genetic Algorithm with Configurable Crossover Probability"

3 / 3 papers shown
Title
Benchmarking Discrete Optimization Heuristics with IOHprofiler
Benchmarking Discrete Optimization Heuristics with IOHprofiler
Carola Doerr
Furong Ye
Naama Horesh
Hao Wang
O. M. Shir
Thomas Bäck
85
72
0
19 Dec 2019
Towards a Theory-Guided Benchmarking Suite for Discrete Black-Box
  Optimization Heuristics: Profiling $(1+λ)$ EA Variants on OneMax and
  LeadingOnes
Towards a Theory-Guided Benchmarking Suite for Discrete Black-Box Optimization Heuristics: Profiling (1+λ)(1+λ)(1+λ) EA Variants on OneMax and LeadingOnes
Carola Doerr
Furong Ye
Sander van Rijn
Hao Wang
Thomas Bäck
35
22
0
17 Aug 2018
A New Method for Lower Bounds on the Running Time of Evolutionary
  Algorithms
A New Method for Lower Bounds on the Running Time of Evolutionary Algorithms
Dirk Sudholt
70
157
0
07 Sep 2011
1