Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.05697
Cited By
v1
v2 (latest)
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
10 June 2020
Jun Shu
Qian Zhao
Zengben Xu
Deyu Meng
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Meta Transition Adaptation for Robust Deep Learning with Noisy Labels"
36 / 36 papers shown
Title
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
520
42,559
0
03 Dec 2019
Human uncertainty makes classification more robust
Joshua C. Peterson
Ruairidh M. Battleday
Thomas Griffiths
Olga Russakovsky
OOD
64
304
0
19 Aug 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
73
379
0
01 Jun 2019
Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels
Pengfei Chen
B. Liao
Guangyong Chen
Shengyu Zhang
NoLa
67
389
0
13 May 2019
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
84
614
0
25 Apr 2019
How does Disagreement Help Generalization against Label Corruption?
Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
NoLa
65
783
0
14 Jan 2019
Rademacher Complexity for Adversarially Robust Generalization
Dong Yin
Kannan Ramchandran
Peter L. Bartlett
AAML
92
261
0
29 Oct 2018
Small Sample Learning in Big Data Era
Jun Shu
Zongben Xu
Deyu Meng
83
72
0
14 Aug 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
179
732
0
13 Jun 2018
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
FedML
ELM
168
414
0
01 Jun 2018
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Zhilu Zhang
M. Sabuncu
NoLa
85
2,608
0
20 May 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
115
2,078
0
18 Apr 2018
Joint Optimization Framework for Learning with Noisy Labels
Daiki Tanaka
Daiki Ikami
T. Yamasaki
Kiyoharu Aizawa
NoLa
74
712
0
30 Mar 2018
Learning to Reweight Examples for Robust Deep Learning
Mengye Ren
Wenyuan Zeng
Binh Yang
R. Urtasun
OOD
NoLa
146
1,430
0
24 Mar 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
134
556
0
14 Feb 2018
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
86
643
0
14 Feb 2018
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
154
548
0
18 Dec 2017
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
106
1,456
0
14 Dec 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
282
9,797
0
25 Oct 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
83
609
0
29 Jul 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
207
1,224
0
26 Jun 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
310
12,117
0
19 Jun 2017
Decoupling "when to update" from "how to update"
Eran Malach
Shai Shalev-Shwartz
NoLa
85
567
0
08 Jun 2017
Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks
Arash Vahdat
NoLa
92
298
0
31 May 2017
Learning Deep Networks from Noisy Labels with Dropout Regularization
Ishan Jindal
M. Nokleby
Xuewen Chen
NoLa
61
184
0
09 May 2017
Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples
Haw-Shiuan Chang
Erik Learned-Miller
Andrew McCallum
75
354
0
24 Apr 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
825
11,937
0
09 Mar 2017
Learning from Noisy Labels with Distillation
Yuncheng Li
Jianchao Yang
Yale Song
Liangliang Cao
Jiebo Luo
Li Li
NoLa
80
550
0
07 Mar 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
345
4,629
0
10 Nov 2016
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
110
1,458
0
13 Sep 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
545
5,909
0
08 Jul 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
886
27,412
0
02 Dec 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
362
19,723
0
09 Mar 2015
Label Distribution Learning
Xin Geng
59
527
0
26 Aug 2014
Classification with Asymmetric Label Noise: Consistency and Maximal Denoising
Gilles Blanchard
Marek Flaska
G. Handy
Sara Pozzi
Clayton Scott
NoLa
103
244
0
05 Mar 2013
1