ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.05356
  4. Cited By
Scalable Thompson Sampling using Sparse Gaussian Process Models
v1v2v3v4 (latest)

Scalable Thompson Sampling using Sparse Gaussian Process Models

9 June 2020
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
ArXiv (abs)PDFHTML

Papers citing "Scalable Thompson Sampling using Sparse Gaussian Process Models"

46 / 46 papers shown
Title
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
65
23
0
12 Apr 2021
Revisiting Bayesian Optimization in the light of the COCO benchmark
Revisiting Bayesian Optimization in the light of the COCO benchmark
Rodolphe Le Riche
Victor Picheny
62
27
0
30 Mar 2021
GIBBON: General-purpose Information-Based Bayesian OptimisatioN
GIBBON: General-purpose Information-Based Bayesian OptimisatioN
Henry B. Moss
David S. Leslie
Javier I. González
Paul Rayson
66
44
0
05 Feb 2021
Gaussian Process Molecule Property Prediction with FlowMO
Gaussian Process Molecule Property Prediction with FlowMO
Henry B. Moss
Ryan-Rhys Griffiths
91
23
0
02 Oct 2020
BOSS: Bayesian Optimization over String Spaces
BOSS: Bayesian Optimization over String Spaces
Henry B. Moss
Daniel Beck
Javier I. González
David S. Leslie
Paul Rayson
56
68
0
02 Oct 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
60
135
0
15 Sep 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
69
55
0
30 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
85
123
0
17 Jun 2020
Practical Hilbert space approximate Bayesian Gaussian processes for
  probabilistic programming
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming
Gabriel Riutort-Mayol
Paul-Christian Bürkner
Michael R. Andersen
Arno Solin
Aki Vehtari
64
71
0
23 Apr 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
68
95
0
02 Mar 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
56
165
0
21 Feb 2020
Scalable Constrained Bayesian Optimization
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
68
99
0
20 Feb 2020
Bandit optimisation of functions in the Matérn kernel RKHS
Bandit optimisation of functions in the Matérn kernel RKHS
David Janz
David R. Burt
Javier I. González
42
45
0
28 Jan 2020
Thompson Sampling for Contextual Bandit Problems with Auxiliary Safety
  Constraints
Thompson Sampling for Contextual Bandit Problems with Auxiliary Safety Constraints
Sam Daulton
Shaun Singh
Vashist Avadhanula
Drew Dimmery
E. Bakshy
55
13
0
02 Nov 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
86
465
0
03 Oct 2019
Convergence of Gaussian Process Regression with Estimated
  Hyper-parameters and Applications in Bayesian Inverse Problems
Convergence of Gaussian Process Regression with Estimated Hyper-parameters and Applications in Bayesian Inverse Problems
A. Teckentrup
39
67
0
31 Aug 2019
Sparse Spectrum Gaussian Process for Bayesian Optimization
Sparse Spectrum Gaussian Process for Bayesian Optimization
Ang Yang
Cheng Li
Santu Rana
Sunil R. Gupta
Svetha Venkatesh
42
5
0
21 Jun 2019
Gaussian Process Optimization with Adaptive Sketching: Scalable and No
  Regret
Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
GP
43
0
0
13 Mar 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
56
154
0
08 Mar 2019
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GPBDL
141
343
0
06 Jul 2018
Bayesian Optimization of Combinatorial Structures
Bayesian Optimization of Combinatorial Structures
Ricardo Baptista
Matthias Poloczek
83
137
0
22 Jun 2018
A Flexible Framework for Multi-Objective Bayesian Optimization using
  Random Scalarizations
A Flexible Framework for Multi-Objective Bayesian Optimization using Random Scalarizations
Biswajit Paria
Kirthevasan Kandasamy
Barnabás Póczós
140
130
0
30 May 2018
Approximation beats concentration? An approximation view on inference
  with smooth radial kernels
Approximation beats concentration? An approximation view on inference with smooth radial kernels
M. Belkin
95
69
0
10 Jan 2018
Non-convex Optimization for Machine Learning
Non-convex Optimization for Machine Learning
Prateek Jain
Purushottam Kar
163
486
0
21 Dec 2017
Replication or exploration? Sequential design for stochastic simulation
  experiments
Replication or exploration? Sequential design for stochastic simulation experiments
M. Binois
Jiangeng Huang
R. Gramacy
M. Ludkovski
66
115
0
09 Oct 2017
Constrained Bayesian Optimization for Automatic Chemical Design
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
117
76
0
16 Sep 2017
Parallel and Distributed Thompson Sampling for Large-scale Accelerated
  Exploration of Chemical Space
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
76
185
0
06 Jun 2017
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
54
214
0
05 Jun 2017
On Kernelized Multi-armed Bandits
On Kernelized Multi-armed Bandits
Sayak Ray Chowdhury
Aditya Gopalan
116
460
0
03 Apr 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
68
200
0
21 Nov 2016
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
78
666
0
27 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
44
144
0
14 Oct 2016
The Parallel Knowledge Gradient Method for Batch Bayesian Optimization
The Parallel Knowledge Gradient Method for Batch Bayesian Optimization
Jian Wu
P. Frazier
ODLBDL
48
225
0
14 Jun 2016
Batch Bayesian Optimization via Local Penalization
Batch Bayesian Optimization via Local Penalization
Javier I. González
Zhenwen Dai
Philipp Hennig
Neil D. Lawrence
77
356
0
29 May 2015
Scalable Bayesian Optimization Using Deep Neural Networks
Scalable Bayesian Optimization Using Deep Neural Networks
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
BDLUQCV
95
1,043
0
19 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Predictive Entropy Search for Efficient Global Optimization of Black-box
  Functions
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
107
647
0
10 Jun 2014
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Arno Solin
Simo Särkkä
206
217
0
21 Jan 2014
Thompson Sampling for Complex Bandit Problems
Thompson Sampling for Complex Bandit Problems
Aditya Gopalan
Shie Mannor
Yishay Mansour
144
202
0
03 Nov 2013
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
107
1,232
0
26 Sep 2013
Thompson Sampling for 1-Dimensional Exponential Family Bandits
Thompson Sampling for 1-Dimensional Exponential Family Bandits
N. Korda
E. Kaufmann
Rémi Munos
74
155
0
12 Jul 2013
Learning to Optimize Via Posterior Sampling
Learning to Optimize Via Posterior Sampling
Daniel Russo
Benjamin Van Roy
198
702
0
11 Jan 2013
Thompson Sampling for Contextual Bandits with Linear Payoffs
Thompson Sampling for Contextual Bandits with Linear Payoffs
Shipra Agrawal
Navin Goyal
195
1,004
0
15 Sep 2012
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
359
7,942
0
13 Jun 2012
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
E. Kaufmann
N. Korda
Rémi Munos
162
588
0
18 May 2012
Entropy Search for Information-Efficient Global Optimization
Entropy Search for Information-Efficient Global Optimization
Philipp Hennig
Christian J. Schuler
118
673
0
06 Dec 2011
1