Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.05051
Cited By
Constrained episodic reinforcement learning in concave-convex and knapsack settings
9 June 2020
Kianté Brantley
Miroslav Dudík
Thodoris Lykouris
Sobhan Miryoosefi
Max Simchowitz
Aleksandrs Slivkins
Wen Sun
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Constrained episodic reinforcement learning in concave-convex and knapsack settings"
18 / 18 papers shown
Title
Primal-Dual Sample Complexity Bounds for Constrained Markov Decision Processes with Multiple Constraints
Max Buckley
Konstantinos Papathanasiou
Andreas Spanopoulos
60
0
0
09 Mar 2025
Reinforcement learning with combinatorial actions for coupled restless bandits
Lily Xu
Bryan Wilder
Elias B. Khalil
Milind Tambe
75
1
0
01 Mar 2025
Polynomial-Time Approximability of Constrained Reinforcement Learning
Jeremy McMahan
219
0
0
11 Feb 2025
Global Reinforcement Learning: Beyond Linear and Convex Rewards via Submodular Semi-gradient Methods
Ric De Santi
Manish Prajapat
Andreas Krause
41
3
0
13 Jul 2024
Provably Efficient Exploration in Constrained Reinforcement Learning:Posterior Sampling Is All You Need
Danil Provodin
Pratik Gajane
Mykola Pechenizkiy
M. Kaptein
39
0
0
27 Sep 2023
Pseudonorm Approachability and Applications to Regret Minimization
Christoph Dann
Yishay Mansour
M. Mohri
Jon Schneider
Balasubramanian Sivan
39
5
0
03 Feb 2023
Reinforcement Learning with Stepwise Fairness Constraints
Zhun Deng
He Sun
Zhiwei Steven Wu
Linjun Zhang
David C. Parkes
FaML
OffRL
43
11
0
08 Nov 2022
Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities: Robustness, Safety, and Generalizability
Mengdi Xu
Zuxin Liu
Peide Huang
Wenhao Ding
Zhepeng Cen
Bo Li
Ding Zhao
79
45
0
16 Sep 2022
Provably Efficient Model-Free Constrained RL with Linear Function Approximation
A. Ghosh
Xingyu Zhou
Ness B. Shroff
75
23
0
23 Jun 2022
Near-Optimal Sample Complexity Bounds for Constrained MDPs
Sharan Vaswani
Lin F. Yang
Csaba Szepesvári
35
32
0
13 Jun 2022
A Review of Safe Reinforcement Learning: Methods, Theory and Applications
Shangding Gu
Longyu Yang
Yali Du
Guang Chen
Florian Walter
Jun Wang
Alois C. Knoll
OffRL
AI4TS
117
241
0
20 May 2022
Challenging Common Assumptions in Convex Reinforcement Learning
Mirco Mutti
Ric De Santi
Piersilvio De Bartolomeis
Marcello Restelli
OffRL
37
21
0
03 Feb 2022
Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach
Qinbo Bai
Amrit Singh Bedi
Mridul Agarwal
Alec Koppel
Vaneet Aggarwal
107
56
0
13 Sep 2021
Concave Utility Reinforcement Learning with Zero-Constraint Violations
Mridul Agarwal
Qinbo Bai
Vaneet Aggarwal
38
12
0
12 Sep 2021
A Simple Reward-free Approach to Constrained Reinforcement Learning
Sobhan Miryoosefi
Chi Jin
16
29
0
12 Jul 2021
A Provably-Efficient Model-Free Algorithm for Constrained Markov Decision Processes
Honghao Wei
Xin Liu
Lei Ying
29
21
0
03 Jun 2021
Provably Efficient Algorithms for Multi-Objective Competitive RL
Tiancheng Yu
Yi Tian
J.N. Zhang
S. Sra
26
20
0
05 Feb 2021
Provably Efficient Safe Exploration via Primal-Dual Policy Optimization
Dongsheng Ding
Xiaohan Wei
Zhuoran Yang
Zhaoran Wang
M. Jovanović
29
159
0
01 Mar 2020
1