Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.05032
Cited By
Stealing Deep Reinforcement Learning Models for Fun and Profit
9 June 2020
Kangjie Chen
Shangwei Guo
Tianwei Zhang
Xiaofei Xie
Yang Liu
MLAU
MIACV
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stealing Deep Reinforcement Learning Models for Fun and Profit"
43 / 43 papers shown
Title
Position: A taxonomy for reporting and describing AI security incidents
L. Bieringer
Kevin Paeth
Andreas Wespi
Kathrin Grosse
Alexandre Alahi
Kathrin Grosse
130
0
0
19 Dec 2024
Stealthy and Efficient Adversarial Attacks against Deep Reinforcement Learning
Jianwen Sun
Tianwei Zhang
Xiaofei Xie
Lei Ma
Yan Zheng
Kangjie Chen
Yang Liu
AAML
46
115
0
14 May 2020
Towards Characterizing Adversarial Defects of Deep Learning Software from the Lens of Uncertainty
Xiyue Zhang
Xiaofei Xie
Lei Ma
Xiaoning Du
Q. Hu
Yang Liu
Jianjun Zhao
Meng Sun
AAML
42
76
0
24 Apr 2020
Cryptanalytic Extraction of Neural Network Models
Nicholas Carlini
Matthew Jagielski
Ilya Mironov
FedML
MLAU
MIACV
AAML
113
135
0
10 Mar 2020
High Accuracy and High Fidelity Extraction of Neural Networks
Matthew Jagielski
Nicholas Carlini
David Berthelot
Alexey Kurakin
Nicolas Papernot
MLAU
MIACV
81
377
0
03 Sep 2019
Optimal Attacks on Reinforcement Learning Policies
Alessio Russo
Alexandre Proutiere
AAML
41
42
0
31 Jul 2019
Characterizing Attacks on Deep Reinforcement Learning
Xinlei Pan
Chaowei Xiao
Warren He
Shuang Yang
Jian Peng
...
Jinfeng Yi
Zijiang Yang
Mingyan D. Liu
Yue Liu
D. Song
AAML
51
70
0
21 Jul 2019
Sequential Triggers for Watermarking of Deep Reinforcement Learning Policies
Vahid Behzadan
W. Hsu
OffRL
28
19
0
03 Jun 2019
A framework for the extraction of Deep Neural Networks by leveraging public data
Soham Pal
Yash Gupta
Aditya Shukla
Aditya Kanade
S. Shevade
V. Ganapathy
FedML
MLAU
MIACV
63
56
0
22 May 2019
Stealing Neural Networks via Timing Side Channels
Vasisht Duddu
D. Samanta
D. V. Rao
V. Balas
AAML
MLAU
FedML
63
134
0
31 Dec 2018
Knockoff Nets: Stealing Functionality of Black-Box Models
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
MLAU
86
534
0
06 Dec 2018
Exploring Connections Between Active Learning and Model Extraction
Varun Chandrasekaran
Kamalika Chaudhuri
Irene Giacomelli
Shane Walker
Songbai Yan
MIACV
184
158
0
05 Nov 2018
Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks
Sanghyun Hong
Michael Davinroy
Yigitcan Kaya
S. Locke
Ian Rackow
Kevin Kulda
Dana Dachman-Soled
Tudor Dumitras
MIACV
53
89
0
08 Oct 2018
Cache Telepathy: Leveraging Shared Resource Attacks to Learn DNN Architectures
Mengjia Yan
Christopher W. Fletcher
Josep Torrellas
MIACV
FedML
61
247
0
14 Aug 2018
Model Reconstruction from Model Explanations
S. Milli
Ludwig Schmidt
Anca Dragan
Moritz Hardt
FAtt
52
177
0
13 Jul 2018
Learning to Drive in a Day
Alex Kendall
Jeffrey Hawke
David Janz
Przemyslaw Mazur
Daniele Reda
John M. Allen
Vinh-Dieu Lam
Alex Bewley
Amar Shah
95
656
0
01 Jul 2018
Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data
Jacson Rodrigues Correia-Silva
Rodrigo Berriel
C. Badue
Alberto F. de Souza
Thiago Oliveira-Santos
MLAU
82
175
0
14 Jun 2018
Defending Against Machine Learning Model Stealing Attacks Using Deceptive Perturbations
Taesung Lee
Ben Edwards
Ian Molloy
D. Su
AAML
60
41
0
31 May 2018
PRADA: Protecting against DNN Model Stealing Attacks
Mika Juuti
S. Szyller
Samuel Marchal
Nadarajah Asokan
SILM
AAML
66
442
0
07 May 2018
Improving Transferability of Adversarial Examples with Input Diversity
Cihang Xie
Zhishuai Zhang
Yuyin Zhou
Song Bai
Jianyu Wang
Zhou Ren
Alan Yuille
AAML
100
1,121
0
19 Mar 2018
Stealing Hyperparameters in Machine Learning
Binghui Wang
Neil Zhenqiang Gong
AAML
134
464
0
14 Feb 2018
Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring
Yossi Adi
Carsten Baum
Moustapha Cissé
Benny Pinkas
Joseph Keshet
61
674
0
13 Feb 2018
Model Extraction Warning in MLaaS Paradigm
M. Kesarwani
B. Mukhoty
Vijay Arya
S. Mehta
MLAU
44
141
0
20 Nov 2017
Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation
Yuhuai Wu
Elman Mansimov
Shun Liao
Roger C. Grosse
Jimmy Ba
OffRL
52
626
0
17 Aug 2017
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
448
19,006
0
20 Jul 2017
MagNet: a Two-Pronged Defense against Adversarial Examples
Dongyu Meng
Hao Chen
AAML
46
1,207
0
25 May 2017
Adversarial Attacks on Neural Network Policies
Sandy Huang
Nicolas Papernot
Ian Goodfellow
Yan Duan
Pieter Abbeel
MLAU
AAML
87
837
0
08 Feb 2017
Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks
Vahid Behzadan
Arslan Munir
AAML
SILM
63
276
0
16 Jan 2017
Embedding Watermarks into Deep Neural Networks
Yusuke Uchida
Yuki Nagai
S. Sakazawa
Shiníchi Satoh
114
607
0
15 Jan 2017
Sample Efficient Actor-Critic with Experience Replay
Ziyun Wang
V. Bapst
N. Heess
Volodymyr Mnih
Rémi Munos
Koray Kavukcuoglu
Nando de Freitas
97
761
0
03 Nov 2016
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
233
4,120
0
18 Oct 2016
Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving
Shai Shalev-Shwartz
Shaked Shammah
Amnon Shashua
102
833
0
11 Oct 2016
Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning
Yuke Zhu
Roozbeh Mottaghi
Eric Kolve
Joseph J. Lim
Abhinav Gupta
Li Fei-Fei
Ali Farhadi
VGen
61
1,524
0
16 Sep 2016
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
102
1,804
0
09 Sep 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
245
8,548
0
16 Aug 2016
Generative Adversarial Imitation Learning
Jonathan Ho
Stefano Ermon
GAN
131
3,101
0
10 Jun 2016
Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization
Chelsea Finn
Sergey Levine
Pieter Abbeel
108
948
0
01 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,931
0
16 Feb 2016
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
191
8,850
0
04 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
96
3,957
0
24 Nov 2015
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
316
13,234
0
09 Sep 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
252
19,045
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
255
14,912
1
21 Dec 2013
1