Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.04603
Cited By
BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray dataset
8 June 2020
A. Signoroni
Mattia Savardi
Sergio Benini
Nicola Adami
R. Leonardi
Paolo Gibellini
F. Vaccher
M. Ravanelli
A. Borghesi
R. Maroldi
D. Farina
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray dataset"
6 / 6 papers shown
Title
Vision Transformer using Low-level Chest X-ray Feature Corpus for COVID-19 Diagnosis and Severity Quantification
Sangjoon Park
Gwanghyun Kim
Y. Oh
J. Seo
Sang Min Lee
Jin Hwan Kim
Sungjun Moon
Jae-Kwang Lim
Jong Chul Ye
ViT
MedIm
48
97
0
15 Apr 2021
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features
Ashkan Khakzar
Yang Zhang
W. Mansour
Yuezhi Cai
Yawei Li
Yucheng Zhang
Seong Tae Kim
Nassir Navab
FAtt
44
17
0
01 Apr 2021
Severity Quantification and Lesion Localization of COVID-19 on CXR using Vision Transformer
Gwanghyun Kim
Sangjoon Park
Y. Oh
J. Seo
Sang Min Lee
Jin Hwan Kim
Sungjun Moon
Jae-Kwang Lim
J. C. Ye
ViT
MedIm
30
4
0
12 Mar 2021
Vision Transformer for COVID-19 CXR Diagnosis using Chest X-ray Feature Corpus
Sangjoon Park
Gwanghyun Kim
Y. Oh
J. Seo
Sang Min Lee
Jin Hwan Kim
Sungjun Moon
Jae-Kwang Lim
J. C. Ye
ViT
MedIm
38
33
0
12 Mar 2021
Checklist for responsible deep learning modeling of medical images based on COVID-19 detection studies
Weronika Hryniewska
Przemysław Bombiński
P. Szatkowski
Paulina Tomaszewska
A. Przelaskowski
P. Biecek
OOD
27
47
0
11 Dec 2020
COVID-MobileXpert: On-Device COVID-19 Patient Triage and Follow-up using Chest X-rays
Xin Li
Chengyin Li
D. Zhu
24
79
0
06 Apr 2020
1