Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.04228
Cited By
Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery of Nonlinear Partial Differential Operators from Data
7 June 2020
Steven Atkinson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery of Nonlinear Partial Differential Operators from Data"
4 / 4 papers shown
Title
Machine Learning for Partial Differential Equations
Steven L. Brunton
J. Nathan Kutz
AI4CE
45
20
0
30 Mar 2023
Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders
Joseph Bakarji
Kathleen P. Champion
J. Nathan Kutz
Steven L. Brunton
40
82
0
13 Jan 2022
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
760
0
13 Mar 2020
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
191
84
0
12 Sep 2019
1