ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04062
  4. Cited By
Consistency Regularization for Certified Robustness of Smoothed
  Classifiers

Consistency Regularization for Certified Robustness of Smoothed Classifiers

7 June 2020
Jongheon Jeong
Jinwoo Shin
    AAML
ArXivPDFHTML

Papers citing "Consistency Regularization for Certified Robustness of Smoothed Classifiers"

24 / 24 papers shown
Title
Robust Representation Consistency Model via Contrastive Denoising
Robust Representation Consistency Model via Contrastive Denoising
Jiachen Lei
Julius Berner
Jiongxiao Wang
Zhongzhu Chen
Zhongjia Ba
Kui Ren
Jun Zhu
Anima Anandkumar
DiffM
82
0
0
22 Jan 2025
Average Certified Radius is a Poor Metric for Randomized Smoothing
Average Certified Radius is a Poor Metric for Randomized Smoothing
Chenhao Sun
Yuhao Mao
Mark Niklas Muller
Martin Vechev
AAML
41
0
0
09 Oct 2024
Certified Causal Defense with Generalizable Robustness
Certified Causal Defense with Generalizable Robustness
Yiran Qiao
Yu Yin
Chen Chen
Jing Ma
AAML
OOD
CML
52
0
0
28 Aug 2024
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
Meiyu Zhong
Ravi Tandon
44
3
0
03 Jul 2024
Certifying Adapters: Enabling and Enhancing the Certification of
  Classifier Adversarial Robustness
Certifying Adapters: Enabling and Enhancing the Certification of Classifier Adversarial Robustness
Jieren Deng
Hanbin Hong
A. Palmer
Xin Zhou
Jinbo Bi
Kaleel Mahmood
Yuan Hong
Derek Aguiar
AAML
40
0
0
25 May 2024
Accelerated Smoothing: A Scalable Approach to Randomized Smoothing
Accelerated Smoothing: A Scalable Approach to Randomized Smoothing
Devansh Bhardwaj
Kshitiz Kaushik
Sarthak Gupta
AAML
37
0
0
12 Feb 2024
Promoting Robustness of Randomized Smoothing: Two Cost-Effective
  Approaches
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches
Linbo Liu
T. Hoang
Lam M. Nguyen
Tsui-Wei Weng
AAML
29
0
0
11 Oct 2023
Enhancing Multiple Reliability Measures via Nuisance-extended
  Information Bottleneck
Enhancing Multiple Reliability Measures via Nuisance-extended Information Bottleneck
Jongheon Jeong
Sihyun Yu
Hankook Lee
Jinwoo Shin
AAML
44
0
0
24 Mar 2023
Revisiting Intermediate Layer Distillation for Compressing Language
  Models: An Overfitting Perspective
Revisiting Intermediate Layer Distillation for Compressing Language Models: An Overfitting Perspective
Jongwoo Ko
Seungjoon Park
Minchan Jeong
S. Hong
Euijai Ahn
Duhyeuk Chang
Se-Young Yun
23
6
0
03 Feb 2023
Confidence-aware Training of Smoothed Classifiers for Certified
  Robustness
Confidence-aware Training of Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Seojin Kim
Jinwoo Shin
AAML
21
7
0
18 Dec 2022
Data Models for Dataset Drift Controls in Machine Learning With Optical
  Images
Data Models for Dataset Drift Controls in Machine Learning With Optical Images
Luis Oala
Marco Aversa
Gabriel Nobis
Kurt Willis
Yoan Neuenschwander
...
E. Pomarico
Wojciech Samek
Roderick Murray-Smith
Christoph Clausen
B. Sanguinetti
28
5
0
04 Nov 2022
Accelerating Certified Robustness Training via Knowledge Transfer
Accelerating Certified Robustness Training via Knowledge Transfer
Pratik Vaishnavi
Kevin Eykholt
Amir Rahmati
24
7
0
25 Oct 2022
Improving Robust Fairness via Balance Adversarial Training
Improving Robust Fairness via Balance Adversarial Training
Chunyu Sun
Chenye Xu
Chengyuan Yao
Siyuan Liang
Yichao Wu
Ding Liang
XiangLong Liu
Aishan Liu
23
11
0
15 Sep 2022
CARE: Certifiably Robust Learning with Reasoning via Variational
  Inference
CARE: Certifiably Robust Learning with Reasoning via Variational Inference
Jiawei Zhang
Linyi Li
Ce Zhang
Bo-wen Li
AAML
OOD
40
8
0
12 Sep 2022
Double Sampling Randomized Smoothing
Double Sampling Randomized Smoothing
Linyi Li
Jiawei Zhang
Tao Xie
Bo-wen Li
AAML
17
23
0
16 Jun 2022
Towards Evading the Limits of Randomized Smoothing: A Theoretical
  Analysis
Towards Evading the Limits of Randomized Smoothing: A Theoretical Analysis
Raphael Ettedgui
Alexandre Araujo
Rafael Pinot
Y. Chevaleyre
Jamal Atif
AAML
34
3
0
03 Jun 2022
(De-)Randomized Smoothing for Decision Stump Ensembles
(De-)Randomized Smoothing for Decision Stump Ensembles
Miklós Z. Horváth
Mark Niklas Muller
Marc Fischer
Martin Vechev
30
3
0
27 May 2022
Certified Adversarial Defenses Meet Out-of-Distribution Corruptions:
  Benchmarking Robustness and Simple Baselines
Certified Adversarial Defenses Meet Out-of-Distribution Corruptions: Benchmarking Robustness and Simple Baselines
Jiachen Sun
Akshay Mehra
B. Kailkhura
Pin-Yu Chen
Dan Hendrycks
Jihun Hamm
Z. Morley Mao
AAML
33
21
0
01 Dec 2021
Learning Robust Controllers Via Probabilistic Model-Based Policy Search
Learning Robust Controllers Via Probabilistic Model-Based Policy Search
V. Charvet
B. S. Jensen
R. Murray-Smith
19
2
0
26 Oct 2021
On the Certified Robustness for Ensemble Models and Beyond
On the Certified Robustness for Ensemble Models and Beyond
Zhuolin Yang
Linyi Li
Xiaojun Xu
B. Kailkhura
Tao Xie
Bo-wen Li
AAML
29
48
0
22 Jul 2021
Scalable Certified Segmentation via Randomized Smoothing
Scalable Certified Segmentation via Randomized Smoothing
Marc Fischer
Maximilian Baader
Martin Vechev
18
38
0
01 Jul 2021
Consistency Regularization for Adversarial Robustness
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
41
57
0
08 Mar 2021
SoK: Certified Robustness for Deep Neural Networks
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
33
128
0
09 Sep 2020
Multiclass Classification Calibration Functions
Multiclass Classification Calibration Functions
Bernardo Avila-Pires
Csaba Szepesvári
75
27
0
20 Sep 2016
1