ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.04004
  4. Cited By
Distributionally Robust Weighted $k$-Nearest Neighbors

Distributionally Robust Weighted kkk-Nearest Neighbors

7 June 2020
Shixiang Zhu
Liyan Xie
Minghe Zhang
Rui Gao
Yao Xie
    OOD
ArXivPDFHTML

Papers citing "Distributionally Robust Weighted $k$-Nearest Neighbors"

27 / 27 papers shown
Title
Riemannian Optimization on Relaxed Indicator Matrix Manifold
Riemannian Optimization on Relaxed Indicator Matrix Manifold
Jinghui Yuan
Fangyuan Xie
Feiping Nie
Xuelong Li
101
0
0
26 Mar 2025
Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management
Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management
Shuyi Chen
Ferdinando Fioretto
Feng Qiu
Shixiang Zhu
137
2
0
25 Feb 2025
Uncertainty-Aware Robust Learning on Noisy Graphs
Uncertainty-Aware Robust Learning on Noisy Graphs
Shuyi Chen
Kaize Ding
Shixiang Zhu
88
5
0
14 Jun 2023
Distributionally Robust Learning
Distributionally Robust Learning
Ruidi Chen
I. Paschalidis
OOD
78
67
0
20 Aug 2021
Differentiable Convex Optimization Layers
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
88
660
0
28 Oct 2019
Wasserstein Distributionally Robust Optimization: Theory and
  Applications in Machine Learning
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
62
394
0
23 Aug 2019
Generalizing from a Few Examples: A Survey on Few-Shot Learning
Generalizing from a Few Examples: A Survey on Few-Shot Learning
Yaqing Wang
Quanming Yao
James T. Kwok
L. Ni
90
1,814
0
10 Apr 2019
Meta-Learning with Differentiable Convex Optimization
Meta-Learning with Differentiable Convex Optimization
Kwonjoon Lee
Subhransu Maji
Avinash Ravichandran
Stefano Soatto
94
1,268
0
07 Apr 2019
Neural Nearest Neighbors Networks
Neural Nearest Neighbors Networks
Tobias Plötz
Stefan Roth
70
339
0
30 Oct 2018
BACH: Grand Challenge on Breast Cancer Histology Images
BACH: Grand Challenge on Breast Cancer Histology Images
Guilherme Aresta
Teresa Araújo
S. Kwok
Sai Saketh Chennamsetty
P. MohammedSafwanK.
...
L. Boulmane
A. Campilho
C. Eloy
A. Polónia
Paulo Aguiar
405
569
0
13 Aug 2018
Robust Hypothesis Testing Using Wasserstein Uncertainty Sets
Robust Hypothesis Testing Using Wasserstein Uncertainty Sets
Rui Gao
Liyan Xie
Yao Xie
Huan Xu
OOD
49
70
0
27 May 2018
Wasserstein Distributionally Robust Optimization and Variation
  Regularization
Wasserstein Distributionally Robust Optimization and Variation Regularization
Rui Gao
Xi Chen
A. Kleywegt
OOD
61
131
0
17 Dec 2017
Certifying Some Distributional Robustness with Principled Adversarial
  Training
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
125
863
0
29 Oct 2017
Regularization via Mass Transportation
Regularization via Mass Transportation
Soroosh Shafieezadeh-Abadeh
Daniel Kuhn
Peyman Mohajerin Esfahani
OOD
85
205
0
27 Oct 2017
Doubly Robust Data-Driven Distributionally Robust Optimization
Doubly Robust Data-Driven Distributionally Robust Optimization
Jose H. Blanchet
Yang Kang
Fan Zhang
Fei He
Zhangyi Hu
OOD
42
13
0
19 May 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
300
8,134
0
15 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
823
11,909
0
09 Mar 2017
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks
Brandon Amos
J. Zico Kolter
156
963
0
01 Mar 2017
Robust Wasserstein Profile Inference and Applications to Machine
  Learning
Robust Wasserstein Profile Inference and Applications to Machine Learning
Jose H. Blanchet
Yang Kang
Karthyek Murthy
OOD
71
331
0
18 Oct 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
370
7,323
0
13 Jun 2016
A Minimax Approach to Supervised Learning
A Minimax Approach to Supervised Learning
Farzan Farnia
David Tse
207
107
0
07 Jun 2016
Quantifying Distributional Model Risk via Optimal Transport
Quantifying Distributional Model Risk via Optimal Transport
Jose H. Blanchet
Karthyek Murthy
78
425
0
05 Apr 2016
Distributionally Robust Logistic Regression
Distributionally Robust Logistic Regression
Soroosh Shafieezadeh-Abadeh
Peyman Mohajerin Esfahani
Daniel Kuhn
OOD
78
306
0
30 Sep 2015
Data-driven Distributionally Robust Optimization Using the Wasserstein
  Metric: Performance Guarantees and Tractable Reformulations
Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations
Peyman Mohajerin Esfahani
Daniel Kuhn
77
1,661
0
19 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
Efficient Classification for Metric Data
Efficient Classification for Metric Data
Lee-Ad Gottlieb
A. Kontorovich
Robert Krauthgamer
83
74
0
11 Jun 2013
Optimal weighted nearest neighbour classifiers
Optimal weighted nearest neighbour classifiers
R. Samworth
177
276
0
30 Jan 2011
1