ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.03950
  4. Cited By
ValNorm Quantifies Semantics to Reveal Consistent Valence Biases Across
  Languages and Over Centuries

ValNorm Quantifies Semantics to Reveal Consistent Valence Biases Across Languages and Over Centuries

6 June 2020
Autumn Toney
Aylin Caliskan
ArXivPDFHTML

Papers citing "ValNorm Quantifies Semantics to Reveal Consistent Valence Biases Across Languages and Over Centuries"

21 / 21 papers shown
Title
Detecting Emergent Intersectional Biases: Contextualized Word Embeddings
  Contain a Distribution of Human-like Biases
Detecting Emergent Intersectional Biases: Contextualized Word Embeddings Contain a Distribution of Human-like Biases
W. Guo
Aylin Caliskan
23
237
0
06 Jun 2020
Sentiment Analysis: Automatically Detecting Valence, Emotions, and Other
  Affectual States from Text
Sentiment Analysis: Automatically Detecting Valence, Emotions, and Other Affectual States from Text
Saif M. Mohammad
34
313
0
25 May 2020
Automatically Characterizing Targeted Information Operations Through
  Biases Present in Discourse on Twitter
Automatically Characterizing Targeted Information Operations Through Biases Present in Discourse on Twitter
Autumn Toney
Akshat Pandey
W. Guo
David A. Broniatowski
Aylin Caliskan
38
3
0
18 Apr 2020
CogniVal: A Framework for Cognitive Word Embedding Evaluation
CogniVal: A Framework for Cognitive Word Embedding Evaluation
Nora Hollenstein
A. D. L. Torre
N. Langer
Ce Zhang
57
66
0
19 Sep 2019
Affect Enriched Word Embeddings for News Information Retrieval
Affect Enriched Word Embeddings for News Information Retrieval
Tommaso Teofili
Niyati Chhaya
40
4
0
04 Sep 2019
Interpretable Word Embeddings via Informative Priors
Interpretable Word Embeddings via Informative Priors
Miriam Hurtado Bodell
Martin Arvidsson
Måns Magnusson
59
18
0
03 Sep 2019
Understanding Undesirable Word Embedding Associations
Understanding Undesirable Word Embedding Associations
Kawin Ethayarajh
David Duvenaud
Graeme Hirst
FaML
33
125
0
18 Aug 2019
Evaluating Word Embedding Models: Methods and Experimental Results
Evaluating Word Embedding Models: Methods and Experimental Results
Bin Wang
Angela Wang
Fenxiao Chen
Yun Cheng Wang
C.-C. Jay Kuo
ELM
42
262
0
28 Jan 2019
Learning Word Vectors for 157 Languages
Learning Word Vectors for 157 Languages
Edouard Grave
Piotr Bojanowski
Prakhar Gupta
Armand Joulin
Tomas Mikolov
SSL
FaML
80
1,421
0
19 Feb 2018
A Survey of Word Embeddings Evaluation Methods
A Survey of Word Embeddings Evaluation Methods
Amir Bakarov
55
183
0
21 Jan 2018
Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes
Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes
Nikhil Garg
L. Schiebinger
Dan Jurafsky
James Zou
AI4TS
39
952
0
22 Nov 2017
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
ConceptNet 5.5: An Open Multilingual Graph of General Knowledge
R. Speer
Joshua Chin
Catherine Havasi
130
2,882
0
12 Dec 2016
Semantics derived automatically from language corpora contain human-like
  biases
Semantics derived automatically from language corpora contain human-like biases
Aylin Caliskan
J. Bryson
Arvind Narayanan
133
2,650
0
25 Aug 2016
SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity
SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity
D. Gerz
Ivan Vulić
Felix Hill
Roi Reichart
Anna Korhonen
52
262
0
02 Aug 2016
Enriching Word Vectors with Subword Information
Enriching Word Vectors with Subword Information
Piotr Bojanowski
Edouard Grave
Armand Joulin
Tomas Mikolov
NAI
SSL
VLM
192
9,944
0
15 Jul 2016
Correlation-based Intrinsic Evaluation of Word Vector Representations
Correlation-based Intrinsic Evaluation of Word Vector Representations
Yulia Tsvetkov
Manaal Faruqui
Chris Dyer
88
30
0
21 Jun 2016
Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change
Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change
William L. Hamilton
J. Leskovec
Dan Jurafsky
70
915
0
30 May 2016
Problems With Evaluation of Word Embeddings Using Word Similarity Tasks
Problems With Evaluation of Word Embeddings Using Word Similarity Tasks
Manaal Faruqui
Yulia Tsvetkov
Pushpendre Rastogi
Chris Dyer
39
280
0
08 May 2016
SimLex-999: Evaluating Semantic Models with (Genuine) Similarity
  Estimation
SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation
Felix Hill
Roi Reichart
Anna Korhonen
71
1,304
0
15 Aug 2014
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
550
31,406
0
16 Jan 2013
From Frequency to Meaning: Vector Space Models of Semantics
From Frequency to Meaning: Vector Space Models of Semantics
Peter D. Turney
Patrick Pantel
144
2,985
0
04 Mar 2010
1