Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.03712
Cited By
Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing
5 June 2020
Vishaal Krishnan
Abed AlRahman Al Makdah
Fabio Pasqualetti
OOD
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing"
7 / 7 papers shown
Title
Explicit Lipschitz Value Estimation Enhances Policy Robustness Against Perturbation
Xulin Chen
Ruipeng Liu
Garret E. Katz
46
0
0
22 Apr 2024
Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering
Rui Zhu
Di Tang
Siyuan Tang
Guanhong Tao
Shiqing Ma
Xiaofeng Wang
Haixu Tang
DD
23
3
0
29 Jan 2023
A Quantitative Geometric Approach to Neural-Network Smoothness
Zehao Wang
Gautam Prakriya
S. Jha
43
13
0
02 Mar 2022
Robust Adversarial Classification via Abstaining
Abed AlRahman Al Makdah
Vaibhav Katewa
Fabio Pasqualetti
21
0
0
06 Apr 2021
CLIP: Cheap Lipschitz Training of Neural Networks
Leon Bungert
René Raab
Tim Roith
Leo Schwinn
Daniel Tenbrinck
32
32
0
23 Mar 2021
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
194
275
0
03 Dec 2018
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
317
5,847
0
08 Jul 2016
1