ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.03712
  4. Cited By
Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing

Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing

5 June 2020
Vishaal Krishnan
Abed AlRahman Al Makdah
Fabio Pasqualetti
    OOD
    AAML
ArXivPDFHTML

Papers citing "Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing"

7 / 7 papers shown
Title
Explicit Lipschitz Value Estimation Enhances Policy Robustness Against
  Perturbation
Explicit Lipschitz Value Estimation Enhances Policy Robustness Against Perturbation
Xulin Chen
Ruipeng Liu
Garret E. Katz
46
0
0
22 Apr 2024
Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering
Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering
Rui Zhu
Di Tang
Siyuan Tang
Guanhong Tao
Shiqing Ma
Xiaofeng Wang
Haixu Tang
DD
23
3
0
29 Jan 2023
A Quantitative Geometric Approach to Neural-Network Smoothness
A Quantitative Geometric Approach to Neural-Network Smoothness
Zehao Wang
Gautam Prakriya
S. Jha
43
13
0
02 Mar 2022
Robust Adversarial Classification via Abstaining
Robust Adversarial Classification via Abstaining
Abed AlRahman Al Makdah
Vaibhav Katewa
Fabio Pasqualetti
21
0
0
06 Apr 2021
CLIP: Cheap Lipschitz Training of Neural Networks
CLIP: Cheap Lipschitz Training of Neural Networks
Leon Bungert
René Raab
Tim Roith
Leo Schwinn
Daniel Tenbrinck
32
32
0
23 Mar 2021
Disentangling Adversarial Robustness and Generalization
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
194
275
0
03 Dec 2018
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
317
5,847
0
08 Jul 2016
1