ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.02587
  4. Cited By
XGNN: Towards Model-Level Explanations of Graph Neural Networks

XGNN: Towards Model-Level Explanations of Graph Neural Networks

3 June 2020
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
ArXivPDFHTML

Papers citing "XGNN: Towards Model-Level Explanations of Graph Neural Networks"

16 / 66 papers shown
Title
Towards Automated Evaluation of Explanations in Graph Neural Networks
Towards Automated Evaluation of Explanations in Graph Neural Networks
Bannihati Kumar Vanya
Balaji Ganesan
Aniket Saxena
Devbrat Sharma
Arvind Agarwal
XAI
GNN
26
4
0
22 Jun 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of
  GNN Explanation Methods
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
27
51
0
16 Jun 2021
Order Matters: Probabilistic Modeling of Node Sequence for Graph
  Generation
Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation
Xiaohui Chen
Xu Han
Jiajing Hu
Francisco J. R. Ruiz
Liping Liu
BDL
24
34
0
11 Jun 2021
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Thorben Funke
Megha Khosla
Mandeep Rathee
Avishek Anand
FAtt
23
38
0
18 May 2021
MEG: Generating Molecular Counterfactual Explanations for Deep Graph
  Networks
MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks
Danilo Numeroso
D. Bacciu
29
38
0
16 Apr 2021
DIG: A Turnkey Library for Diving into Graph Deep Learning Research
DIG: A Turnkey Library for Diving into Graph Deep Learning Research
Meng Liu
Youzhi Luo
Limei Wang
Yaochen Xie
Haonan Yuan
...
Haoran Liu
Cong Fu
Bora Oztekin
Xuan Zhang
Shuiwang Ji
GNN
24
118
0
23 Mar 2021
Self-Supervised Learning of Graph Neural Networks: A Unified Review
Self-Supervised Learning of Graph Neural Networks: A Unified Review
Yaochen Xie
Zhao Xu
Jingtun Zhang
Zhengyang Wang
Shuiwang Ji
SSL
33
324
0
22 Feb 2021
Interpreting and Unifying Graph Neural Networks with An Optimization
  Framework
Interpreting and Unifying Graph Neural Networks with An Optimization Framework
Meiqi Zhu
Xiao Wang
C. Shi
Houye Ji
Peng Cui
AI4CE
54
197
0
28 Jan 2021
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised
  Classification
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification
Rui Yang
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
28
20
0
07 Dec 2020
xFraud: Explainable Fraud Transaction Detection
xFraud: Explainable Fraud Transaction Detection
Susie Xi Rao
Shuai Zhang
Zhichao Han
Zitao Zhang
Wei Min
Zhiyao Chen
Yinan Shan
Yang Zhao
Ce Zhang
33
49
0
24 Nov 2020
Parameterized Explainer for Graph Neural Network
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
33
540
0
09 Nov 2020
Graph Neural Networks in Recommender Systems: A Survey
Graph Neural Networks in Recommender Systems: A Survey
Shiwen Wu
Fei Sun
Wentao Zhang
Xu Xie
Tengjiao Wang
GNN
56
1,175
0
04 Nov 2020
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
32
215
0
05 Jun 2020
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
206
885
0
07 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,684
0
28 Feb 2017
Previous
12