Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.02377
Cited By
RODE-Net: Learning Ordinary Differential Equations with Randomness from Data
3 June 2020
Junyu Liu
Zichao Long
Ranran Wang
Jie Sun
Bin Dong
Re-assign community
ArXiv
PDF
HTML
Papers citing
"RODE-Net: Learning Ordinary Differential Equations with Randomness from Data"
8 / 8 papers shown
Title
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
233
785
0
13 Mar 2020
DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm
Hao Xu
Haibin Chang
Dongxiao Zhang
AI4CE
49
89
0
21 Jan 2020
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
120
365
0
05 Nov 2018
Solving Linear Inverse Problems Using GAN Priors: An Algorithm with Provable Guarantees
Viraj Shah
Chinmay Hegde
GAN
89
166
0
23 Feb 2018
PDE-Net: Learning PDEs from Data
Zichao Long
Yiping Lu
Xianzhong Ma
Bin Dong
DiffM
AI4CE
43
756
0
26 Oct 2017
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
M. Raissi
George Karniadakis
AI4CE
PINN
73
1,137
0
02 Aug 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
201
9,548
0
31 Mar 2017
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
242
10,686
0
15 Sep 2016
1