ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.01708
  4. Cited By
Dilated U-net based approach for multichannel speech enhancement from
  First-Order Ambisonics recordings

Dilated U-net based approach for multichannel speech enhancement from First-Order Ambisonics recordings

2 June 2020
Amélie Bosca
Alexandre Guérin
L. Perotin
Srdan Kitic
ArXivPDFHTML

Papers citing "Dilated U-net based approach for multichannel speech enhancement from First-Order Ambisonics recordings"

6 / 6 papers shown
Title
Single-Channel Speech Enhancement with Deep Complex U-Networks and
  Probabilistic Latent Space Models
Single-Channel Speech Enhancement with Deep Complex U-Networks and Probabilistic Latent Space Models
E. J. Nustede
Jörn Anemüller
27
3
0
04 Sep 2023
Direction Specific Ambisonics Source Separation with End-To-End Deep
  Learning
Direction Specific Ambisonics Source Separation with End-To-End Deep Learning
Francesc Lluís
Nils Meyer-Kahlen
V. Chatziioannou
A. Hofmann
14
5
0
19 May 2023
Echo-enabled Direction-of-Arrival and range estimation of a mobile
  source in Ambisonic domain
Echo-enabled Direction-of-Arrival and range estimation of a mobile source in Ambisonic domain
J. Daniel
Srdan Kitic
58
7
0
10 Mar 2022
L3DAS21 Challenge: Machine Learning for 3D Audio Signal Processing
L3DAS21 Challenge: Machine Learning for 3D Audio Signal Processing
E. Guizzo
R. F. Gramaccioni
Saeid Jamili
Christian Marinoni
Edoardo Massaro
...
Marco Pennese
Sveva Pepe
Enrico Rocchi
A. Uncini
Danilo Comminiello
21
27
0
12 Apr 2021
Towards speech enhancement using a variational U-Net architecture
Towards speech enhancement using a variational U-Net architecture
E. J. Nustede
Jörn Anemüller
17
1
0
07 Dec 2020
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source
  Separation
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation
Daniel Stoller
Sebastian Ewert
S. Dixon
AI4TS
104
589
0
08 Jun 2018
1