Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.01408
Cited By
Exploring the role of Input and Output Layers of a Deep Neural Network in Adversarial Defense
2 June 2020
Jay N. Paranjape
R. Dubey
Vijendran V. Gopalan
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploring the role of Input and Output Layers of a Deep Neural Network in Adversarial Defense"
20 / 20 papers shown
Title
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
108
739
0
08 Jan 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
65
1,345
0
12 Dec 2017
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
117
2,323
0
24 Oct 2017
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Pin-Yu Chen
Huan Zhang
Yash Sharma
Jinfeng Yi
Cho-Jui Hsieh
AAML
78
1,878
0
14 Aug 2017
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Jonas Rauber
Wieland Brendel
Matthias Bethge
AAML
63
283
0
13 Jul 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,725
0
19 May 2017
Adversarial and Clean Data Are Not Twins
Zhitao Gong
Wenlu Wang
Wei-Shinn Ku
AAML
51
157
0
17 Apr 2017
SafetyNet: Detecting and Rejecting Adversarial Examples Robustly
Jiajun Lu
Theerasit Issaranon
David A. Forsyth
GAN
84
381
0
01 Apr 2017
Biologically inspired protection of deep networks from adversarial attacks
Aran Nayebi
Surya Ganguli
AAML
59
115
0
27 Mar 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
138
1,737
0
08 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
254
8,550
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
524
5,897
0
08 Jul 2016
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
97
4,167
0
25 Apr 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
98
3,957
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
146
4,895
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
90
3,072
0
14 Nov 2015
Learning Deep Representations of Appearance and Motion for Anomalous Event Detection
Dan Xu
Elisa Ricci
Yan Yan
Jingkuan Song
N. Sebe
168
515
0
06 Oct 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
264
19,045
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
261
14,912
1
21 Dec 2013
1