Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.01107
Cited By
Model-Based Reinforcement Learning with Value-Targeted Regression
1 June 2020
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Model-Based Reinforcement Learning with Value-Targeted Regression"
50 / 223 papers shown
Title
Adaptive Multi-Goal Exploration
Jean Tarbouriech
O. D. Domingues
Pierre Ménard
Matteo Pirotta
Michal Valko
A. Lazaric
28
2
0
23 Nov 2021
Learning Representations for Pixel-based Control: What Matters and Why?
Manan Tomar
Utkarsh Aashu Mishra
Amy Zhang
Matthew E. Taylor
SSL
OffRL
28
24
0
15 Nov 2021
Adaptive Discretization in Online Reinforcement Learning
Sean R. Sinclair
Siddhartha Banerjee
Chao Yu
OffRL
42
15
0
29 Oct 2021
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
Matteo Papini
Andrea Tirinzoni
Aldo Pacchiano
Marcello Restelli
A. Lazaric
Matteo Pirotta
19
18
0
27 Oct 2021
Learning Stochastic Shortest Path with Linear Function Approximation
Steffen Czolbe
Jiafan He
Adrian Dalca
Quanquan Gu
39
30
0
25 Oct 2021
Locally Differentially Private Reinforcement Learning for Linear Mixture Markov Decision Processes
Chonghua Liao
Jiafan He
Quanquan Gu
27
17
0
19 Oct 2021
On Reward-Free RL with Kernel and Neural Function Approximations: Single-Agent MDP and Markov Game
Shuang Qiu
Jieping Ye
Zhaoran Wang
Zhuoran Yang
OffRL
39
23
0
19 Oct 2021
Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs
Han Zhong
Zhuoran Yang
Zhaoran Wang
Csaba Szepesvári
42
21
0
18 Oct 2021
Reward-Free Model-Based Reinforcement Learning with Linear Function Approximation
Weitong Zhang
Dongruo Zhou
Quanquan Gu
OffRL
22
27
0
12 Oct 2021
Understanding Domain Randomization for Sim-to-real Transfer
Xiaoyu Chen
Jiachen Hu
Chi Jin
Lihong Li
Liwei Wang
24
112
0
07 Oct 2021
Improved Algorithms for Misspecified Linear Markov Decision Processes
Daniel Vial
Advait Parulekar
Sanjay Shakkottai
R. Srikant
13
6
0
12 Sep 2021
Provably Efficient Generative Adversarial Imitation Learning for Online and Offline Setting with Linear Function Approximation
Zhihan Liu
Yufeng Zhang
Zuyue Fu
Zhuoran Yang
Zhaoran Wang
OffRL
28
6
0
19 Aug 2021
Efficient Local Planning with Linear Function Approximation
Dong Yin
Botao Hao
Yasin Abbasi-Yadkori
N. Lazić
Csaba Szepesvári
32
19
0
12 Aug 2021
PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided Exploration
Yuda Song
Wen Sun
37
21
0
15 Jul 2021
Pessimistic Model-based Offline Reinforcement Learning under Partial Coverage
Masatoshi Uehara
Wen Sun
OffRL
100
146
0
13 Jul 2021
Model Selection for Generic Reinforcement Learning
Avishek Ghosh
Sayak Ray Chowdhury
Kannan Ramchandran
16
1
0
13 Jul 2021
Gap-Dependent Bounds for Two-Player Markov Games
Zehao Dou
Zhuoran Yang
Zhaoran Wang
S. Du
11
6
0
01 Jul 2021
Model-Advantage and Value-Aware Models for Model-Based Reinforcement Learning: Bridging the Gap in Theory and Practice
Nirbhay Modhe
Harish Kamath
Dhruv Batra
Ashwin Kalyan
OffRL
19
2
0
26 Jun 2021
A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs
Andrea Tirinzoni
Matteo Pirotta
A. Lazaric
19
16
0
24 Jun 2021
Variance-Aware Off-Policy Evaluation with Linear Function Approximation
Yifei Min
Tianhao Wang
Dongruo Zhou
Quanquan Gu
OffRL
37
38
0
22 Jun 2021
Provably Efficient Representation Selection in Low-rank Markov Decision Processes: From Online to Offline RL
Weitong Zhang
Jiafan He
Dongruo Zhou
Amy Zhang
Quanquan Gu
OffRL
22
11
0
22 Jun 2021
Uniform-PAC Bounds for Reinforcement Learning with Linear Function Approximation
Jiafan He
Dongruo Zhou
Quanquan Gu
11
12
0
22 Jun 2021
Proper Value Equivalence
Christopher Grimm
André Barreto
Gregory Farquhar
David Silver
Satinder Singh
OffRL
13
33
0
18 Jun 2021
MADE: Exploration via Maximizing Deviation from Explored Regions
Tianjun Zhang
Paria Rashidinejad
Jiantao Jiao
Yuandong Tian
Joseph E. Gonzalez
Stuart J. Russell
OffRL
34
42
0
18 Jun 2021
Randomized Exploration for Reinforcement Learning with General Value Function Approximation
Haque Ishfaq
Qiwen Cui
V. Nguyen
Alex Ayoub
Zhuoran Yang
Zhaoran Wang
Doina Precup
Lin F. Yang
32
43
0
15 Jun 2021
Online Sub-Sampling for Reinforcement Learning with General Function Approximation
Dingwen Kong
Ruslan Salakhutdinov
Ruosong Wang
Lin F. Yang
OffRL
38
1
0
14 Jun 2021
Thompson Sampling with a Mixture Prior
Joey Hong
B. Kveton
Manzil Zaheer
Mohammad Ghavamzadeh
Craig Boutilier
21
12
0
10 Jun 2021
Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation
Evgenii Nikishin
Romina Abachi
Rishabh Agarwal
Pierre-Luc Bacon
OffRL
52
35
0
06 Jun 2021
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Gen Li
Yuxin Chen
Yuejie Chi
Yuantao Gu
Yuting Wei
OffRL
26
28
0
17 May 2021
Optimal Uniform OPE and Model-based Offline Reinforcement Learning in Time-Homogeneous, Reward-Free and Task-Agnostic Settings
Ming Yin
Yu Wang
OffRL
32
19
0
13 May 2021
Regret Bounds for Stochastic Shortest Path Problems with Linear Function Approximation
Daniel Vial
Advait Parulekar
Sanjay Shakkottai
R. Srikant
42
15
0
04 May 2021
Understanding the Eluder Dimension
Gen Li
Pritish Kamath
Dylan J. Foster
Nathan Srebro
28
11
0
14 Apr 2021
Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation
Andrea Zanette
Ching-An Cheng
Alekh Agarwal
32
52
0
24 Mar 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
39
43
0
23 Mar 2021
Bilinear Classes: A Structural Framework for Provable Generalization in RL
S. Du
Sham Kakade
Jason D. Lee
Shachar Lovett
G. Mahajan
Wen Sun
Ruosong Wang
OffRL
38
188
0
19 Mar 2021
Deep reinforcement learning in medical imaging: A literature review
S. Kevin Zhou
Hoang Ngan Le
Khoa Luu
Hien V Nguyen
N. Ayache
LM&MA
OffRL
MedIm
29
146
0
05 Mar 2021
Online Learning for Unknown Partially Observable MDPs
Mehdi Jafarnia-Jahromi
Rahul Jain
A. Nayyar
34
20
0
25 Feb 2021
Near-optimal Policy Optimization Algorithms for Learning Adversarial Linear Mixture MDPs
Jiafan He
Dongruo Zhou
Quanquan Gu
95
24
0
17 Feb 2021
Almost Optimal Algorithms for Two-player Zero-Sum Linear Mixture Markov Games
Zixiang Chen
Dongruo Zhou
Quanquan Gu
20
25
0
15 Feb 2021
Nearly Minimax Optimal Regret for Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation
Yue Wu
Dongruo Zhou
Quanquan Gu
19
21
0
15 Feb 2021
Model-free Representation Learning and Exploration in Low-rank MDPs
Aditya Modi
Jinglin Chen
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
OffRL
102
78
0
14 Feb 2021
Robust Policy Gradient against Strong Data Corruption
Xuezhou Zhang
Yiding Chen
Xiaojin Zhu
Wen Sun
AAML
40
37
0
11 Feb 2021
Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve Optimism, Embrace Virtual Curvature
Kefan Dong
Jiaqi Yang
Tengyu Ma
24
32
0
08 Feb 2021
Near-optimal Representation Learning for Linear Bandits and Linear RL
Jiachen Hu
Xiaoyu Chen
Chi Jin
Lihong Li
Liwei Wang
OffRL
20
51
0
08 Feb 2021
On Query-efficient Planning in MDPs under Linear Realizability of the Optimal State-value Function
Gellert Weisz
P. Amortila
Barnabás Janzer
Yasin Abbasi-Yadkori
Nan Jiang
Csaba Szepesvári
OffRL
14
20
0
03 Feb 2021
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
71
36
0
29 Jan 2021
Closing the Planning-Learning Loop with Application to Autonomous Driving
Panpan Cai
David Hsu
34
13
0
11 Jan 2021
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
122
166
0
06 Jan 2021
A Provably Efficient Algorithm for Linear Markov Decision Process with Low Switching Cost
Minbo Gao
Tianle Xie
S. Du
Lin F. Yang
36
45
0
02 Jan 2021
Is Pessimism Provably Efficient for Offline RL?
Ying Jin
Zhuoran Yang
Zhaoran Wang
OffRL
27
349
0
30 Dec 2020
Previous
1
2
3
4
5
Next