ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00954
  4. Cited By
One Versus all for deep Neural Network Incertitude (OVNNI)
  quantification

One Versus all for deep Neural Network Incertitude (OVNNI) quantification

1 June 2020
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
    UQCV
    BDL
ArXivPDFHTML

Papers citing "One Versus all for deep Neural Network Incertitude (OVNNI) quantification"

13 / 13 papers shown
Title
Self-Supervised Likelihood Estimation with Energy Guidance for Anomaly Segmentation in Urban Scenes
Self-Supervised Likelihood Estimation with Energy Guidance for Anomaly Segmentation in Urban Scenes
Yuanpeng Tu
Yuxi Li
Boshen Zhang
Liang Liu
Jing Zhang
Yun Wang
C. Zhao
74
3
0
03 Jan 2025
Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation
Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation
Shyam Nandan Rai
Fabio Cermelli
Barbara Caputo
Carlo Masone
ISeg
ViT
40
5
0
08 Sep 2023
Maskomaly:Zero-Shot Mask Anomaly Segmentation
Maskomaly:Zero-Shot Mask Anomaly Segmentation
J. Ackermann
Daniel Gehrig
Feng Yu
ISeg
57
23
0
26 May 2023
Probing Contextual Diversity for Dense Out-of-Distribution Detection
Probing Contextual Diversity for Dense Out-of-Distribution Detection
Silvio Galesso
M. A. Bravo
Mehdi Naouar
Thomas Brox
31
4
0
30 Aug 2022
DenseHybrid: Hybrid Anomaly Detection for Dense Open-set Recognition
DenseHybrid: Hybrid Anomaly Detection for Dense Open-set Recognition
Matej Grcić
Petra Bevandić
Sinivsa vSegvić
42
54
0
06 Jul 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
51
4
0
28 Jun 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
59
0
0
27 Jun 2022
On Monocular Depth Estimation and Uncertainty Quantification using
  Classification Approaches for Regression
On Monocular Depth Estimation and Uncertainty Quantification using Classification Approaches for Regression
Xuanlong Yu
Gianni Franchi
Emanuel Aldea
UQCV
48
2
0
24 Feb 2022
Dense open-set recognition with synthetic outliers generated by Real NVP
Dense open-set recognition with synthetic outliers generated by Real NVP
Matej Grcić
Petra Bevandić
Sinisa Segvic
34
40
0
22 Nov 2020
Revisiting One-vs-All Classifiers for Predictive Uncertainty and
  Out-of-Distribution Detection in Neural Networks
Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks
Shreyas Padhy
Zachary Nado
Jie Jessie Ren
J. Liu
Jasper Snoek
Balaji Lakshminarayanan
UQCV
24
45
0
10 Jul 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
315
5,726
0
05 Dec 2016
ENet: A Deep Neural Network Architecture for Real-Time Semantic
  Segmentation
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
261
2,064
0
07 Jun 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
305
9,202
0
06 Jun 2015
1