Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.00731
Cited By
Second-Order Provable Defenses against Adversarial Attacks
1 June 2020
Sahil Singla
Soheil Feizi
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Second-Order Provable Defenses against Adversarial Attacks"
50 / 53 papers shown
Title
Learning to Learn Transferable Generative Attack for Person Re-Identification
Yuan Bian
Min Liu
Xueping Wang
Yunfeng Ma
Yaonan Wang
AAML
OOD
124
1
0
06 Sep 2024
Certifying LLM Safety against Adversarial Prompting
Aounon Kumar
Chirag Agarwal
Suraj Srinivas
Aaron Jiaxun Li
Soheil Feizi
Himabindu Lakkaraju
AAML
77
191
0
06 Sep 2023
(De)Randomized Smoothing for Certifiable Defense against Patch Attacks
Alexander Levine
Soheil Feizi
AAML
68
149
0
25 Feb 2020
Robustness Certificates for Sparse Adversarial Attacks by Randomized Ablation
Alexander Levine
Soheil Feizi
AAML
62
107
0
21 Nov 2019
Wasserstein Smoothing: Certified Robustness against Wasserstein Adversarial Attacks
Alexander Levine
Soheil Feizi
AAML
30
61
0
23 Oct 2019
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
64
308
0
04 Jul 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
67
347
0
14 Jun 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
87
457
0
12 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
66
549
0
09 Jun 2019
Functional Adversarial Attacks
Cassidy Laidlaw
Soheil Feizi
AAML
64
185
0
29 May 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
141
2,038
0
08 Feb 2019
Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation
Sahil Singla
Eric Wallace
Shi Feng
Soheil Feizi
FAtt
62
59
0
01 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
129
2,549
0
24 Jan 2019
Robustness via curvature regularization, and vice versa
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
J. Uesato
P. Frossard
AAML
72
319
0
23 Nov 2018
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
86
321
0
13 Nov 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
Mohsen Guizani
AAML
43
23
0
06 Nov 2018
Semidefinite relaxations for certifying robustness to adversarial examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
96
439
0
02 Nov 2018
Efficient Neural Network Robustness Certification with General Activation Functions
Huan Zhang
Tsui-Wei Weng
Pin-Yu Chen
Cho-Jui Hsieh
Luca Daniel
AAML
89
760
0
02 Nov 2018
On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models
Sven Gowal
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
Chongli Qin
J. Uesato
Relja Arandjelović
Timothy A. Mann
Pushmeet Kohli
AAML
76
556
0
30 Oct 2018
RecurJac: An Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural Networks and Its Applications
Huan Zhang
Pengchuan Zhang
Cho-Jui Hsieh
AAML
61
63
0
28 Oct 2018
Provable Robustness of ReLU networks via Maximization of Linear Regions
Francesco Croce
Maksym Andriushchenko
Matthias Hein
72
166
0
17 Oct 2018
Efficient Formal Safety Analysis of Neural Networks
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
65
404
0
19 Sep 2018
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
76
448
0
31 May 2018
Lipschitz regularity of deep neural networks: analysis and efficient estimation
Kevin Scaman
Aladin Virmaux
80
529
0
28 May 2018
The Singular Values of Convolutional Layers
Hanie Sedghi
Vineet Gupta
Philip M. Long
FAtt
81
202
0
26 May 2018
Training verified learners with learned verifiers
Krishnamurthy Dvijotham
Sven Gowal
Robert Stanforth
Relja Arandjelović
Brendan O'Donoghue
J. Uesato
Pushmeet Kohli
OOD
54
168
0
25 May 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
82
1,177
0
17 May 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
100
694
0
25 Apr 2018
On the Robustness of the CVPR 2018 White-Box Adversarial Example Defenses
Anish Athalye
Nicholas Carlini
AAML
50
170
0
10 Apr 2018
A Dual Approach to Scalable Verification of Deep Networks
Krishnamurthy Dvijotham
Dvijotham
Robert Stanforth
Sven Gowal
Timothy A. Mann
Pushmeet Kohli
52
399
0
17 Mar 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
155
4,437
0
16 Feb 2018
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks
J. Uesato
Brendan O'Donoghue
Aaron van den Oord
Pushmeet Kohli
AAML
147
604
0
15 Feb 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
94
934
0
09 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
216
3,185
0
01 Feb 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
105
968
0
29 Jan 2018
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
88
420
0
02 Dec 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
123
1,501
0
02 Nov 2017
Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification
Xiaoyu Cao
Neil Zhenqiang Gong
AAML
64
209
0
17 Sep 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
280
8,878
0
25 Aug 2017
An approach to reachability analysis for feed-forward ReLU neural networks
A. Lomuscio
Lalit Maganti
63
359
0
22 Jun 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
301
12,063
0
19 Jun 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
105
511
0
23 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
118
1,857
0
20 May 2017
Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks
Rüdiger Ehlers
102
626
0
03 May 2017
Maximum Resilience of Artificial Neural Networks
Chih-Hong Cheng
Georg Nührenberg
Harald Ruess
AAML
99
284
0
28 Apr 2017
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
146
2,733
0
13 Apr 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
315
1,867
0
03 Feb 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
469
3,140
0
04 Nov 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
211
943
0
21 Oct 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
534
5,897
0
08 Jul 2016
1
2
Next