ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00262
  4. Cited By
Data Augmentation with Unsupervised Machine Translation Improves the
  Structural Similarity of Cross-lingual Word Embeddings

Data Augmentation with Unsupervised Machine Translation Improves the Structural Similarity of Cross-lingual Word Embeddings

30 May 2020
Sosuke Nishikawa
Ryokan Ri
Yoshimasa Tsuruoka
ArXivPDFHTML

Papers citing "Data Augmentation with Unsupervised Machine Translation Improves the Structural Similarity of Cross-lingual Word Embeddings"

3 / 3 papers shown
Title
UniPSDA: Unsupervised Pseudo Semantic Data Augmentation for Zero-Shot
  Cross-Lingual Natural Language Understanding
UniPSDA: Unsupervised Pseudo Semantic Data Augmentation for Zero-Shot Cross-Lingual Natural Language Understanding
Dongyang Li
Taolin Zhang
Jiali Deng
Longtao Huang
Chengyu Wang
Xiaofeng He
Hui Xue
34
1
0
24 Jun 2024
Data Augmentation Approaches in Natural Language Processing: A Survey
Data Augmentation Approaches in Natural Language Processing: A Survey
Bohan Li
Yutai Hou
Wanxiang Che
132
274
0
05 Oct 2021
Word Translation Without Parallel Data
Word Translation Without Parallel Data
Alexis Conneau
Guillaume Lample
MarcÁurelio Ranzato
Ludovic Denoyer
Hervé Jégou
189
1,639
0
11 Oct 2017
1