ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.00235
  4. Cited By
Hyperspectral Image Denoising via Global Spatial-Spectral Total
  Variation Regularized Nonconvex Local Low-Rank Tensor Approximation

Hyperspectral Image Denoising via Global Spatial-Spectral Total Variation Regularized Nonconvex Local Low-Rank Tensor Approximation

30 May 2020
Haijin Zeng
Xiaozhen Xie
J. Ning
ArXivPDFHTML

Papers citing "Hyperspectral Image Denoising via Global Spatial-Spectral Total Variation Regularized Nonconvex Local Low-Rank Tensor Approximation"

3 / 3 papers shown
Title
Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
  Image Denoising
Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral Image Denoising
Haijin Zeng
Jingyun Liang
Kai Feng
Shaoguang Huang
Hongyan Zhang
H. Luong
Wilfried Philips
ViT
39
6
0
06 May 2023
Low-rank Meets Sparseness: An Integrated Spatial-Spectral Total
  Variation Approach to Hyperspectral Denoising
Low-rank Meets Sparseness: An Integrated Spatial-Spectral Total Variation Approach to Hyperspectral Denoising
Haijin Zeng
Shaoguang Huang
Yongyong Chen
H. Luong
Wilfried Philips
32
2
0
27 Apr 2022
Hyperspectral Image Restoration via Total Variation Regularized Low-rank
  Tensor Decomposition
Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition
Yao Wang
Jiangjun Peng
Qian Zhao
Deyu Meng
Yee Leung
Xile Zhao
65
365
0
08 Jul 2017
1