ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.14165
  4. Cited By
Language Models are Few-Shot Learners

Language Models are Few-Shot Learners

28 May 2020
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
Sandhini Agarwal
Ariel Herbert-Voss
Gretchen Krueger
T. Henighan
R. Child
Aditya A. Ramesh
Daniel M. Ziegler
Jeff Wu
Clemens Winter
Christopher Hesse
Mark Chen
Eric Sigler
Ma-teusz Litwin
Scott Gray
B. Chess
Jack Clark
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
    BDL
ArXivPDFHTML

Papers citing "Language Models are Few-Shot Learners"

9 / 1,609 papers shown
Title
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
108
2,006
0
14 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
370
7,321
0
13 Jun 2016
Adaptive Computation Time for Recurrent Neural Networks
Adaptive Computation Time for Recurrent Neural Networks
Alex Graves
112
547
0
29 Mar 2016
Exploring the Limits of Language Modeling
Exploring the Limits of Language Modeling
Rafal Jozefowicz
Oriol Vinyals
M. Schuster
Noam M. Shazeer
Yonghui Wu
191
1,145
0
07 Feb 2016
Improving Neural Machine Translation Models with Monolingual Data
Improving Neural Machine Translation Models with Monolingual Data
Rico Sennrich
Barry Haddow
Alexandra Birch
248
2,717
0
20 Nov 2015
Semi-supervised Sequence Learning
Semi-supervised Sequence Learning
Andrew M. Dai
Quoc V. Le
SSL
128
1,233
0
04 Nov 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
362
19,643
0
09 Mar 2015
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
381
3,135
0
15 Aug 2013
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
677
31,512
0
16 Jan 2013
Previous
123...313233