Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.14165
Cited By
v1
v2
v3
v4 (latest)
Language Models are Few-Shot Learners
28 May 2020
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
Sandhini Agarwal
Ariel Herbert-Voss
Gretchen Krueger
T. Henighan
R. Child
Aditya A. Ramesh
Daniel M. Ziegler
Jeff Wu
Clemens Winter
Christopher Hesse
Mark Chen
Eric Sigler
Ma-teusz Litwin
Scott Gray
B. Chess
Jack Clark
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Language Models are Few-Shot Learners"
15 / 12,315 papers shown
Title
On the adequacy of untuned warmup for adaptive optimization
Jerry Ma
Denis Yarats
106
70
0
09 Oct 2019
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
252
2,174
0
08 Oct 2019
Soft-Label Dataset Distillation and Text Dataset Distillation
Ilia Sucholutsky
Matthias Schonlau
DD
141
135
0
06 Oct 2019
Distributed Learning of Deep Neural Networks using Independent Subnet Training
John Shelton Hyatt
Cameron R. Wolfe
Michael Lee
Yuxin Tang
Anastasios Kyrillidis
Christopher M. Jermaine
OOD
92
39
0
04 Oct 2019
Semi-supervised Thai Sentence Segmentation Using Local and Distant Word Representations
Chanatip Saetia
Ekapol Chuangsuwanich
Tawunrat Chalothorn
P. Vateekul
74
5
0
04 Aug 2019
Trends in Integration of Vision and Language Research: A Survey of Tasks, Datasets, and Methods
Aditya Mogadala
M. Kalimuthu
Dietrich Klakow
VLM
141
136
0
22 Jul 2019
Norms for Beneficial A.I.: A Computational Analysis of the Societal Value Alignment Problem
Pedro M. Fernandes
Francisco C. Santos
Manuel Lopes
45
11
0
26 Jun 2019
Exposure Bias versus Self-Recovery: Are Distortions Really Incremental for Autoregressive Text Generation?
Tianxing He
Jingzhao Zhang
Zhiming Zhou
James R. Glass
101
32
0
25 May 2019
An Information Theoretic Interpretation to Deep Neural Networks
Shao-Lun Huang
Xiangxiang Xu
Lizhong Zheng
G. Wornell
FAtt
90
44
0
16 May 2019
An Attentive Survey of Attention Models
S. Chaudhari
Varun Mithal
Gungor Polatkan
R. Ramanath
192
666
0
05 Apr 2019
A Brain-inspired Algorithm for Training Highly Sparse Neural Networks
Zahra Atashgahi
Joost Pieterse
Shiwei Liu
Decebal Constantin Mocanu
Raymond N. J. Veldhuis
Mykola Pechenizkiy
83
15
0
17 Mar 2019
Investigating Antigram Behaviour using Distributional Semantics
Saptarshi Sengupta
36
0
0
15 Jan 2019
Automated Machine Learning: From Principles to Practices
Quanming Yao
Mengshuo Wang
Hugo Jair Escalante
Huan Zhao
Qiang Yang
117
259
0
31 Oct 2018
Deep Learning for Genomics: A Concise Overview
Tianwei Yue
Yuanxin Wang
Longxiang Zhang
Chunming Gu
Haohan Wang
Wenping Wang
Qi Lyu
Yujie Dun
AILaw
VLM
BDL
86
91
0
02 Feb 2018
Quantifying the probable approximation error of probabilistic inference programs
Marco F. Cusumano-Towner
Vikash K. Mansinghka
100
5
0
31 May 2016
Previous
1
2
3
...
245
246
247