ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.14140
  4. Cited By
Modeling the Distribution of Normal Data in Pre-Trained Deep Features
  for Anomaly Detection

Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection

28 May 2020
Oliver Rippel
Patrick Mertens
Dorit Merhof
ArXivPDFHTML

Papers citing "Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection"

25 / 25 papers shown
Title
AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection
AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection
Bin-Bin Gao
Yue Zhu
Jiangtao Yan
Y. Cai
W. Zhang
Meng Wang
Jun Liu
Y. Liu
L. Wang
Chengjie Wang
VLM
38
0
0
15 May 2025
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning
Bin-Bin Gao
VLM
22
0
0
14 May 2025
Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt
Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt
Bin-Bin Gao
31
4
0
14 May 2025
Unsupervised Anomaly Detection for Autonomous Robots via Mahalanobis SVDD with Audio-IMU Fusion
Unsupervised Anomaly Detection for Autonomous Robots via Mahalanobis SVDD with Audio-IMU Fusion
Yizhuo Yang
Jiulin Zhao
Xinhang Xu
Kun Cao
Shenghai Yuan
Lihua Xie
29
0
0
09 May 2025
Real-IAD D3: A Real-World 2D/Pseudo-3D/3D Dataset for Industrial Anomaly Detection
Real-IAD D3: A Real-World 2D/Pseudo-3D/3D Dataset for Industrial Anomaly Detection
Wenbing Zhu
Lidong Wang
Ziqing Zhou
Chengjie Wang
Yurui Pan
...
Yulong Chen
Shuguang Qian
M. Chi
Bo Peng
Lizhuang Ma
26
0
0
19 Apr 2025
Learning Non-Linear Invariants for Unsupervised Out-of-Distribution
  Detection
Learning Non-Linear Invariants for Unsupervised Out-of-Distribution Detection
Lars Doorenbos
Raphael Sznitman
Pablo Márquez-Neila
37
1
0
04 Jul 2024
Continual Unsupervised Out-of-Distribution Detection
Continual Unsupervised Out-of-Distribution Detection
Lars Doorenbos
Raphael Sznitman
Pablo Márquez-Neila
OODD
33
0
0
04 Jun 2024
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping
Alex Costanzino
Pierluigi Zama Ramirez
Giuseppe Lisanti
Luigi Di Stefano
19
10
0
07 Dec 2023
Set Features for Anomaly Detection
Set Features for Anomaly Detection
Niv Cohen
Issar Tzachor
Yedid Hoshen
29
0
0
24 Nov 2023
End-to-End Augmentation Hyperparameter Tuning for Self-Supervised Anomaly Detection
End-to-End Augmentation Hyperparameter Tuning for Self-Supervised Anomaly Detection
Jaemin Yoo
Lingxiao Zhao
L. Akoglu
30
4
0
21 Jun 2023
Component-aware anomaly detection framework for adjustable and logical
  industrial visual inspection
Component-aware anomaly detection framework for adjustable and logical industrial visual inspection
Tongkun Liu
Bing Li
Xiao Du
Bingke Jiang
Xiao Jin
Liuyi Jin
Zhu Zhao
26
27
0
15 May 2023
Unsupervised out-of-distribution detection for safer robotically guided
  retinal microsurgery
Unsupervised out-of-distribution detection for safer robotically guided retinal microsurgery
Alain Jungo
Lars Doorenbos
Tommaso Da Col
Maarten J. Beelen
M. Zinkernagel
Pablo Márquez-Neila
Raphael Sznitman
OODD
25
3
0
11 Apr 2023
DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly
  Detection
DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection
Xuan Zhang
Shiyu Li
Xi Li
Ping-Chia Huang
Jiulong Shan
Ting Chen
16
126
0
21 Nov 2022
Reconstruction from edge image combined with color and gradient
  difference for industrial surface anomaly detection
Reconstruction from edge image combined with color and gradient difference for industrial surface anomaly detection
Tongkun Liu
Bing Li
Zhu Zhao
Xiaoyu Du
Bin Jiang
Leqi Geng
28
35
0
26 Oct 2022
Learning Invariant Representation and Risk Minimized for Unsupervised
  Accent Domain Adaptation
Learning Invariant Representation and Risk Minimized for Unsupervised Accent Domain Adaptation
Chendong Zhao
Jianzong Wang
Xiaoyang Qu
Haoqian Wang
Jing Xiao
SSL
30
1
0
15 Oct 2022
Learning image representations for anomaly detection: application to
  discovery of histological alterations in drug development
Learning image representations for anomaly detection: application to discovery of histological alterations in drug development
I. Zingman
B. Stierstorfer
C. Lempp
Fabian Heinemann
OOD
MedIm
27
11
0
14 Oct 2022
Self-Supervised Guided Segmentation Framework for Unsupervised Anomaly
  Detection
Self-Supervised Guided Segmentation Framework for Unsupervised Anomaly Detection
Peng-Fei Xing
Yanpeng Sun
Zechao Li
25
12
0
26 Sep 2022
DSR -- A dual subspace re-projection network for surface anomaly
  detection
DSR -- A dual subspace re-projection network for surface anomaly detection
Vitjan Zavrtanik
Matej Kristan
D. Skočaj
10
103
0
02 Aug 2022
Task-oriented Self-supervised Learning for Anomaly Detection in
  Electroencephalography
Task-oriented Self-supervised Learning for Anomaly Detection in Electroencephalography
Yaojia Zheng
Zhouwu Liu
Rong Mo
Ziyi Chen
Weiqiao Zheng
Ruixuan Wang
32
10
0
04 Jul 2022
No Shifted Augmentations (NSA): compact distributions for robust
  self-supervised Anomaly Detection
No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly Detection
Mohamed Yousef
Marcel R. Ackermann
Unmesh Kurup
Tom E. Bishop
OODD
OOD
26
3
0
19 Mar 2022
Anomaly Detection via Reverse Distillation from One-Class Embedding
Anomaly Detection via Reverse Distillation from One-Class Embedding
Hanqiu Deng
Xingyu Li
UQCV
108
448
0
26 Jan 2022
Data Invariants to Understand Unsupervised Out-of-Distribution Detection
Data Invariants to Understand Unsupervised Out-of-Distribution Detection
Lars Doorenbos
Raphael Sznitman
Pablo Márquez-Neila
OODD
21
6
0
26 Nov 2021
Transfer Learning Gaussian Anomaly Detection by Fine-tuning
  Representations
Transfer Learning Gaussian Anomaly Detection by Fine-tuning Representations
Oliver Rippel
Arnav Chavan
Chucai Lei
Dorit Merhof
38
18
0
09 Aug 2021
Data augmentation and pre-trained networks for extremely low data
  regimes unsupervised visual inspection
Data augmentation and pre-trained networks for extremely low data regimes unsupervised visual inspection
Pierre Gutierrez
Antoine Cordier
Thais Caldeira
Théophile Sautory
13
4
0
02 Jun 2021
Semi-orthogonal Embedding for Efficient Unsupervised Anomaly
  Segmentation
Semi-orthogonal Embedding for Efficient Unsupervised Anomaly Segmentation
Jin-Hwa Kim
Do-Hyeong Kim
Saehoon Yi
Taehoon Lee
18
53
0
31 May 2021
1