ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.14139
  4. Cited By
Machine learning and excited-state molecular dynamics

Machine learning and excited-state molecular dynamics

28 May 2020
Julia Westermayr
P. Marquetand
    AI4CE
ArXivPDFHTML

Papers citing "Machine learning and excited-state molecular dynamics"

6 / 6 papers shown
Title
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
59
4
0
12 Mar 2025
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
32
59
0
11 Dec 2022
Deep Learning for UV Absorption Spectra with SchNarc: First Steps
  Towards Transferability in Chemical Compound Space
Deep Learning for UV Absorption Spectra with SchNarc: First Steps Towards Transferability in Chemical Compound Space
Julia Westermayr
P. Marquetand
22
51
0
15 Jul 2020
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
27
258
0
10 Jul 2020
Representations of molecules and materials for interpolation of
  quantum-mechanical simulations via machine learning
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
25
92
0
26 Mar 2020
Deep neural network solution of the electronic Schrödinger equation
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
161
448
0
16 Sep 2019
1