Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.13755
Cited By
Review of Mathematical frameworks for Fairness in Machine Learning
26 May 2020
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Review of Mathematical frameworks for Fairness in Machine Learning"
50 / 50 papers shown
Title
Accounting for Model Uncertainty in Algorithmic Discrimination
Junaid Ali
Adish Singla
Krishna P. Gummadi
FaML
36
21
0
10 May 2021
Fast Fair Regression via Efficient Approximations of Mutual Information
D. Steinberg
Alistair Reid
S. O'Callaghan
Finnian Lattimore
L. McCalman
Tibério S. Caetano
FaML
19
16
0
14 Feb 2020
Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness
Zhu Li
Adrián Pérez-Suay
Gustau Camps-Valls
Dino Sejdinovic
FaML
69
21
0
11 Nov 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
465
4,285
0
23 Aug 2019
Wasserstein Fair Classification
Ray Jiang
Aldo Pacchiano
T. Stepleton
Heinrich Jiang
Silvia Chiappa
47
176
0
28 Jul 2019
FlipTest: Fairness Testing via Optimal Transport
Emily Black
Samuel Yeom
Matt Fredrikson
115
96
0
21 Jun 2019
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
FaML
92
85
0
12 Jun 2019
Fair Regression: Quantitative Definitions and Reduction-based Algorithms
Alekh Agarwal
Miroslav Dudík
Zhiwei Steven Wu
FaML
42
246
0
30 May 2019
Learning Controllable Fair Representations
Jiaming Song
Pratyusha Kalluri
Aditya Grover
Shengjia Zhao
Stefano Ermon
FaML
28
178
0
11 Dec 2018
Taking Advantage of Multitask Learning for Fair Classification
L. Oneto
Michele Donini
Amon Elders
Massimiliano Pontil
FaML
52
60
0
19 Oct 2018
Active Fairness in Algorithmic Decision Making
Alejandro Noriega-Campero
Michiel A. Bakker
Bernardo Garcia-Bulle
Alex Pentland
FaML
37
85
0
28 Sep 2018
A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual & Group Unfairness via Inequality Indices
Till Speicher
Hoda Heidari
Nina Grgic-Hlaca
Krishna P. Gummadi
Adish Singla
Adrian Weller
Muhammad Bilal Zafar
FaML
35
261
0
02 Jul 2018
Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints
Andrew Cotter
Maya R. Gupta
Heinrich Jiang
Nathan Srebro
Karthik Sridharan
S. Wang
Blake E. Woodworth
Seungil You
FaML
16
105
0
29 Jun 2018
Obtaining fairness using optimal transport theory
E. del Barrio
Fabrice Gamboa
Paula Gordaliza
Jean-Michel Loubes
FaML
66
181
0
08 Jun 2018
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Michael P. Kim
Amirata Ghorbani
James Zou
MLAU
149
337
0
31 May 2018
Causal Reasoning for Algorithmic Fairness
Joshua R. Loftus
Chris Russell
Matt J. Kusner
Ricardo M. A. Silva
FaML
CML
42
125
0
15 May 2018
Probably Approximately Metric-Fair Learning
G. Rothblum
G. Yona
FaML
FedML
38
85
0
08 Mar 2018
A Reductions Approach to Fair Classification
Alekh Agarwal
A. Beygelzimer
Miroslav Dudík
John Langford
Hanna M. Wallach
FaML
92
1,094
0
06 Mar 2018
Empirical Risk Minimization under Fairness Constraints
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
FaML
65
443
0
23 Feb 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
294
678
0
17 Feb 2018
Fair Clustering Through Fairlets
Flavio Chierichetti
Ravi Kumar
Silvio Lattanzi
Sergei Vassilvitskii
FaML
37
430
0
15 Feb 2018
Mitigating Unwanted Biases with Adversarial Learning
B. Zhang
Blake Lemoine
Margaret Mitchell
FaML
77
1,373
0
22 Jan 2018
Fairness in Supervised Learning: An Information Theoretic Approach
AmirEmad Ghassami
S. Khodadadian
Negar Kiyavash
FaML
32
48
0
13 Jan 2018
Matching Code and Law: Achieving Algorithmic Fairness with Optimal Transport
Meike Zehlike
P. Hacker
Emil Wiedemann
38
19
0
21 Dec 2017
Calibration for the (Computationally-Identifiable) Masses
Úrsula Hébert-Johnson
Michael P. Kim
Omer Reingold
G. Rothblum
FaML
36
87
0
22 Nov 2017
Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer
David Madras
T. Pitassi
R. Zemel
FaML
69
220
0
17 Nov 2017
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
FaML
90
775
0
14 Nov 2017
Fair Kernel Learning
Adrián Pérez-Suay
Valero Laparra
Gonzalo Mateo-García
Jordi Munoz-Marí
L. Gómez-Chova
Gustau Camps-Valls
FaML
55
84
0
16 Oct 2017
Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations
Alex Beutel
Jilin Chen
Zhe Zhao
Ed H. Chi
FaML
64
442
0
01 Jul 2017
From Parity to Preference-based Notions of Fairness in Classification
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
Adrian Weller
FaML
49
209
0
30 Jun 2017
Avoiding Discrimination through Causal Reasoning
Niki Kilbertus
Mateo Rojas-Carulla
Giambattista Parascandolo
Moritz Hardt
Dominik Janzing
Bernhard Schölkopf
FaML
CML
81
579
0
08 Jun 2017
A Convex Framework for Fair Regression
R. Berk
Hoda Heidari
S. Jabbari
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
FaML
95
342
0
07 Jun 2017
Fair Inference On Outcomes
Razieh Nabi
I. Shpitser
FaML
26
349
0
29 May 2017
Central Limit Theorem for empirical transportation cost in general dimension
E. del Barrio
Jean-Michel Loubes
OT
31
108
0
03 May 2017
Fairness in Criminal Justice Risk Assessments: The State of the Art
R. Berk
Hoda Heidari
S. Jabbari
Michael Kearns
Aaron Roth
30
990
0
27 Mar 2017
Counterfactual Fairness
Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo M. A. Silva
FaML
176
1,566
0
20 Mar 2017
Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
96
1,204
0
26 Oct 2016
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
280
2,098
0
24 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
80
4,276
0
07 Oct 2016
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
75
1,762
0
19 Sep 2016
Satisfying Real-world Goals with Dataset Constraints
Gabriel Goh
Andrew Cotter
Maya R. Gupta
M. Friedlander
OffRL
34
215
0
24 Jun 2016
Towards a Neural Statistician
Harrison Edwards
Amos Storkey
BDL
33
428
0
07 Jun 2016
Auditing Black-box Models for Indirect Influence
Philip Adler
Casey Falk
Sorelle A. Friedler
Gabriel Rybeck
C. Scheidegger
Brandon Smith
Suresh Venkatasubramanian
TDI
MLAU
67
288
0
23 Feb 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
366
16,765
0
16 Feb 2016
A Confidence-Based Approach for Balancing Fairness and Accuracy
Benjamin Fish
Jeremy Kun
Á. Lelkes
FaML
98
248
0
21 Jan 2016
Censoring Representations with an Adversary
Harrison Edwards
Amos Storkey
AAML
FaML
41
504
0
18 Nov 2015
Existence and Consistency of Wasserstein Barycenters
Thibaut Le Gouic
Jean-Michel Loubes
38
130
0
12 Jun 2015
On the relation between accuracy and fairness in binary classification
Indrė Žliobaitė
FaML
30
196
0
21 May 2015
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
88
1,978
0
11 Dec 2014
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
Yann N. Dauphin
Razvan Pascanu
Çağlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
ODL
84
1,379
0
10 Jun 2014
1