ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.13163
14
21

Semi-supervised source localization with deep generative modeling

27 May 2020
Michael J. Bianco
Sharon Gannot
Peter Gerstoft
    DRL
ArXivPDFHTML
Abstract

We propose a semi-supervised localization approach based on deep generative modeling with variational autoencoders (VAEs). Localization in reverberant environments remains a challenge, which machine learning (ML) has shown promise in addressing. Even with large data volumes, the number of labels available for supervised learning in reverberant environments is usually small. We address this issue by performing semi-supervised learning (SSL) with convolutional VAEs. The VAE is trained to generate the phase of relative transfer functions (RTFs), in parallel with a DOA classifier, on both labeled and unlabeled RTF samples. The VAE-SSL approach is compared with SRP-PHAT and fully-supervised CNNs. We find that VAE-SSL can outperform both SRP-PHAT and CNN in label-limited scenarios.

View on arXiv
Comments on this paper