ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.13097
  4. Cited By
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness

On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness

27 May 2020
Murat A. Erdogdu
Rasa Hosseinzadeh
ArXivPDFHTML

Papers citing "On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness"

41 / 41 papers shown
Title
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint
  Sampling Method
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint Sampling Method
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
50
33
0
06 Nov 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
87
51
0
14 Jun 2020
Black-box sampling for weakly smooth Langevin Monte Carlo using
  p-generalized Gaussian smoothing
Black-box sampling for weakly smooth Langevin Monte Carlo using p-generalized Gaussian smoothing
Anh Doan
Xin Dang
D. Nguyen
18
1
0
24 Feb 2020
Estimating Normalizing Constants for Log-Concave Distributions:
  Algorithms and Lower Bounds
Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds
Rong Ge
Holden Lee
Jianfeng Lu
43
22
0
08 Nov 2019
An Efficient Sampling Algorithm for Non-smooth Composite Potentials
An Efficient Sampling Algorithm for Non-smooth Composite Potentials
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
35
24
0
01 Oct 2019
The Randomized Midpoint Method for Log-Concave Sampling
The Randomized Midpoint Method for Log-Concave Sampling
Ruoqi Shen
Y. Lee
89
115
0
12 Sep 2019
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
Wenlong Mou
Yian Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
DiffM
43
85
0
28 Aug 2019
Bayesian Robustness: A Nonasymptotic Viewpoint
Bayesian Robustness: A Nonasymptotic Viewpoint
Kush S. Bhatia
Yian Ma
Anca Dragan
Peter L. Bartlett
Michael I. Jordan
26
7
0
27 Jul 2019
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal
  Rates without Convexity
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal Rates without Convexity
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
34
67
0
25 Jul 2019
Bounding the error of discretized Langevin algorithms for non-strongly
  log-concave targets
Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets
A. Dalalyan
Avetik G. Karagulyan
L. Riou-Durand
51
38
0
20 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
36
71
0
19 Jun 2019
Langevin Monte Carlo without smoothness
Langevin Monte Carlo without smoothness
Niladri S. Chatterji
Jelena Diakonikolas
Michael I. Jordan
Peter L. Bartlett
BDL
72
43
0
30 May 2019
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry
  Suffices
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices
Santosh Vempala
Andre Wibisono
79
264
0
20 Mar 2019
Is There an Analog of Nesterov Acceleration for MCMC?
Is There an Analog of Nesterov Acceleration for MCMC?
Yian Ma
Niladri Chatterji
Xiang Cheng
Nicolas Flammarion
Peter L. Bartlett
Michael I. Jordan
BDL
54
78
0
04 Feb 2019
Simulated Tempering Langevin Monte Carlo II: An Improved Proof using
  Soft Markov Chain Decomposition
Simulated Tempering Langevin Monte Carlo II: An Improved Proof using Soft Markov Chain Decomposition
Rong Ge
Holden Lee
Andrej Risteski
117
28
0
29 Nov 2018
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
55
78
0
25 Nov 2018
Sampling Can Be Faster Than Optimization
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
65
184
0
20 Nov 2018
Global Non-convex Optimization with Discretized Diffusions
Global Non-convex Optimization with Discretized Diffusions
Murat A. Erdogdu
Lester W. Mackey
Ohad Shamir
66
105
0
29 Oct 2018
Non-asymptotic bounds for sampling algorithms without log-concavity
Non-asymptotic bounds for sampling algorithms without log-concavity
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
46
73
0
21 Aug 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
47
166
0
04 May 2018
Mirrored Langevin Dynamics
Mirrored Langevin Dynamics
Ya-Ping Hsieh
Ali Kavis
Paul Rolland
Volkan Cevher
71
85
0
27 Feb 2018
Analysis of Langevin Monte Carlo via convex optimization
Analysis of Langevin Monte Carlo via convex optimization
Alain Durmus
Szymon Majewski
B. Miasojedow
62
219
0
26 Feb 2018
Sampling as optimization in the space of measures: The Langevin dynamics
  as a composite optimization problem
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
93
179
0
22 Feb 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
60
87
0
15 Feb 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
66
254
0
08 Jan 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
65
296
0
29 Sep 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
68
205
0
20 Jul 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
82
297
0
12 Jul 2017
Convergence of Langevin MCMC in KL-divergence
Convergence of Langevin MCMC in KL-divergence
Xiang Cheng
Peter L. Bartlett
47
190
0
25 May 2017
Further and stronger analogy between sampling and optimization: Langevin
  Monte Carlo and gradient descent
Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent
A. Dalalyan
BDL
45
174
0
16 Apr 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
61
236
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
70
521
0
13 Feb 2017
Efficient Bayesian computation by proximal Markov chain Monte Carlo:
  when Langevin meets Moreau
Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau
Alain Durmus
Eric Moulines
Marcelo Pereyra
53
176
0
22 Dec 2016
Measuring Sample Quality with Diffusions
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
68
116
0
21 Nov 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
252
1,216
0
16 Aug 2016
High-dimensional Bayesian inference via the Unadjusted Langevin
  Algorithm
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
74
33
0
05 May 2016
Non-asymptotic convergence analysis for the Unadjusted Langevin
  Algorithm
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
64
412
0
17 Jul 2015
A Complete Recipe for Stochastic Gradient MCMC
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
60
486
0
15 Jun 2015
A Moreau-Yosida approximation scheme for a class of high-dimensional
  posterior distributions
A Moreau-Yosida approximation scheme for a class of high-dimensional posterior distributions
Yves F. Atchadé
57
11
0
26 May 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
66
514
0
23 Dec 2014
Sparse Regression Learning by Aggregation and Langevin Monte-Carlo
Sparse Regression Learning by Aggregation and Langevin Monte-Carlo
A. Dalalyan
Alexandre B. Tsybakov
164
179
0
06 Mar 2009
1