ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.12636
  4. Cited By
Hard Shape-Constrained Kernel Machines

Hard Shape-Constrained Kernel Machines

26 May 2020
Pierre-Cyril Aubin-Frankowski
Z. Szabó
ArXivPDFHTML

Papers citing "Hard Shape-Constrained Kernel Machines"

13 / 13 papers shown
Title
Exploiting Concavity Information in Gaussian Process Contextual Bandit Optimization
Kevin Li
Eric Laber
48
0
0
13 Mar 2025
A Specialized Semismooth Newton Method for Kernel-Based Optimal
  Transport
A Specialized Semismooth Newton Method for Kernel-Based Optimal Transport
Tianyi Lin
Marco Cuturi
Michael I. Jordan
OT
36
0
0
21 Oct 2023
A Convex Framework for Confounding Robust Inference
A Convex Framework for Confounding Robust Inference
Kei Ishikawa
Naio He
Takafumi Kanamori
OffRL
17
0
0
21 Sep 2023
Kernel Conditional Moment Constraints for Confounding Robust Inference
Kernel Conditional Moment Constraints for Confounding Robust Inference
Kei Ishikawa
Niao He
OffRL
19
3
0
26 Feb 2023
Linear Partial Monitoring for Sequential Decision-Making: Algorithms,
  Regret Bounds and Applications
Linear Partial Monitoring for Sequential Decision-Making: Algorithms, Regret Bounds and Applications
Johannes Kirschner
Tor Lattimore
Andreas Krause
16
8
0
07 Feb 2023
Approximation of optimization problems with constraints through kernel
  Sum-Of-Squares
Approximation of optimization problems with constraints through kernel Sum-Of-Squares
Pierre-Cyril Aubin-Frankowski
Alessandro Rudi
18
1
0
16 Jan 2023
On Controller Tuning with Time-Varying Bayesian Optimization
On Controller Tuning with Time-Varying Bayesian Optimization
Paul Brunzema
Alexander von Rohr
Sebastian Trimpe
15
17
0
22 Jul 2022
Capturing and incorporating expert knowledge into machine learning
  models for quality prediction in manufacturing
Capturing and incorporating expert knowledge into machine learning models for quality prediction in manufacturing
Patrick Link
Miltiadis Poursanidis
J. Schmid
Rebekka Zache
Martin von Kurnatowski
U. Teicher
S. Ihlenfeldt
14
16
0
04 Feb 2022
Using Shape Constraints for Improving Symbolic Regression Models
Using Shape Constraints for Improving Symbolic Regression Models
C. Haider
F. O. França
Bogdan Burlacu
G. Kronberger
9
6
0
20 Jul 2021
A Dimension-free Computational Upper-bound for Smooth Optimal Transport
  Estimation
A Dimension-free Computational Upper-bound for Smooth Optimal Transport Estimation
A. Vacher
Boris Muzellec
Alessandro Rudi
Francis R. Bach
François-Xavier Vialard
OT
22
26
0
13 Jan 2021
Handling Hard Affine SDP Shape Constraints in RKHSs
Handling Hard Affine SDP Shape Constraints in RKHSs
Pierre-Cyril Aubin-Frankowski
Z. Szabó
21
7
0
05 Jan 2021
Sparse Representations of Positive Functions via First and Second-Order
  Pseudo-Mirror Descent
Sparse Representations of Positive Functions via First and Second-Order Pseudo-Mirror Descent
A. Chakraborty
K. Rajawat
Alec Koppel
11
3
0
13 Nov 2020
Least squares estimation in the monotone single index model
Least squares estimation in the monotone single index model
F. Balabdaoui
C. Durot
H. Jankowski
40
45
0
19 Oct 2016
1