Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.11901
Cited By
Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated Learning
25 May 2020
Renuga Kanagavelu
Zengxiang Li
J. Samsudin
Yechao Yang
Feng Yang
Rick Siow Mong Goh
Mervyn Cheah
Praewpiraya Wiwatphonthana
K. Akkarajitsakul
Shangguang Wang
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated Learning"
5 / 5 papers shown
Title
NET-SA: An Efficient Secure Aggregation Architecture Based on In-Network Computing
Qingqing Ren
Wen Wang
Shuyong Zhu
Zhiyuan Wu
Yujun Zhang
40
0
0
02 Jan 2025
Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications
Azim Akhtarshenas
Mohammad Ali Vahedifar
Navid Ayoobi
B. Maham
Tohid Alizadeh
Sina Ebrahimi
David López-Pérez
FedML
41
5
0
08 Oct 2023
BFRT: Blockchained Federated Learning for Real-time Traffic Flow Prediction
Collin Meese
Hang Chen
Syed Ali Asif
Wanxin Li
Chien-Chung Shen
Mark M. Nejad
41
22
0
28 May 2023
Balancing Privacy Protection and Interpretability in Federated Learning
Zhe Li
Honglong Chen
Zhichen Ni
Huajie Shao
FedML
16
8
0
16 Feb 2023
Enigma: Decentralized Computation Platform with Guaranteed Privacy
Guy Zyskind
Oz Nathan
Alex Pentland
MoE
FedML
35
445
0
10 Jun 2015
1