ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.11901
  4. Cited By
Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated
  Learning

Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated Learning

25 May 2020
Renuga Kanagavelu
Zengxiang Li
J. Samsudin
Yechao Yang
Feng Yang
Rick Siow Mong Goh
Mervyn Cheah
Praewpiraya Wiwatphonthana
K. Akkarajitsakul
Shangguang Wang
    FedML
ArXivPDFHTML

Papers citing "Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated Learning"

5 / 5 papers shown
Title
NET-SA: An Efficient Secure Aggregation Architecture Based on In-Network Computing
Qingqing Ren
Wen Wang
Shuyong Zhu
Zhiyuan Wu
Yujun Zhang
40
0
0
02 Jan 2025
Federated Learning: A Cutting-Edge Survey of the Latest Advancements and
  Applications
Federated Learning: A Cutting-Edge Survey of the Latest Advancements and Applications
Azim Akhtarshenas
Mohammad Ali Vahedifar
Navid Ayoobi
B. Maham
Tohid Alizadeh
Sina Ebrahimi
David López-Pérez
FedML
41
5
0
08 Oct 2023
BFRT: Blockchained Federated Learning for Real-time Traffic Flow
  Prediction
BFRT: Blockchained Federated Learning for Real-time Traffic Flow Prediction
Collin Meese
Hang Chen
Syed Ali Asif
Wanxin Li
Chien-Chung Shen
Mark M. Nejad
41
22
0
28 May 2023
Balancing Privacy Protection and Interpretability in Federated Learning
Balancing Privacy Protection and Interpretability in Federated Learning
Zhe Li
Honglong Chen
Zhichen Ni
Huajie Shao
FedML
16
8
0
16 Feb 2023
Enigma: Decentralized Computation Platform with Guaranteed Privacy
Enigma: Decentralized Computation Platform with Guaranteed Privacy
Guy Zyskind
Oz Nathan
Alex Pentland
MoE
FedML
35
445
0
10 Jun 2015
1