ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.11375
  4. Cited By
Consistency of Empirical Bayes And Kernel Flow For Hierarchical
  Parameter Estimation

Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation

22 May 2020
Yifan Chen
H. Owhadi
Andrew M. Stuart
ArXivPDFHTML

Papers citing "Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation"

8 / 8 papers shown
Title
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
35
5
0
30 Jun 2024
Smoothness Estimation for Whittle-Matérn Processes on Closed
  Riemannian Manifolds
Smoothness Estimation for Whittle-Matérn Processes on Closed Riemannian Manifolds
Moritz Korte-Stapff
Toni Karvonen
Eric Moulines
29
0
0
31 Dec 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
17
0
08 May 2023
One-Shot Learning of Stochastic Differential Equations with Data Adapted
  Kernels
One-Shot Learning of Stochastic Differential Equations with Data Adapted Kernels
Matthieu Darcy
B. Hamzi
Giulia Livieri
H. Owhadi
P. Tavallali
36
26
0
24 Sep 2022
Gaussian Process Hydrodynamics
Gaussian Process Hydrodynamics
H. Owhadi
24
1
0
21 Sep 2022
An asymptotic study of the joint maximum likelihood estimation of the
  regularity and the amplitude parameters of a Mat{é}rn model on the circle
An asymptotic study of the joint maximum likelihood estimation of the regularity and the amplitude parameters of a Mat{é}rn model on the circle
S. Petit
29
0
0
16 Sep 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process
  Interpolation
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
24
1
0
10 Mar 2022
Deep regularization and direct training of the inner layers of Neural
  Networks with Kernel Flows
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
24
21
0
19 Feb 2020
1