ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.10754
  4. Cited By
Efficient Ensemble Model Generation for Uncertainty Estimation with
  Bayesian Approximation in Segmentation

Efficient Ensemble Model Generation for Uncertainty Estimation with Bayesian Approximation in Segmentation

21 May 2020
Hong Joo Lee
S. T. Kim
Hakmin Lee
Nassir Navab
Yong Man Ro
    UQCV
ArXivPDFHTML

Papers citing "Efficient Ensemble Model Generation for Uncertainty Estimation with Bayesian Approximation in Segmentation"

7 / 7 papers shown
Title
Uncertainty estimates for semantic segmentation: providing enhanced
  reliability for automated motor claims handling
Uncertainty estimates for semantic segmentation: providing enhanced reliability for automated motor claims handling
Jan Küchler
Daniel Kröll
S. Schoenen
Andreas Witte
UQCV
37
1
0
17 Jan 2024
Improving Video Instance Segmentation by Light-weight Temporal
  Uncertainty Estimates
Improving Video Instance Segmentation by Light-weight Temporal Uncertainty Estimates
Kira Maag
Matthias Rottmann
Serin Varghese
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
22
12
0
14 Dec 2020
Deep Sub-Ensembles for Fast Uncertainty Estimation in Image
  Classification
Deep Sub-Ensembles for Fast Uncertainty Estimation in Image Classification
Matias Valdenegro-Toro
UQCV
58
51
0
17 Oct 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
446
15,639
0
02 Nov 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1