ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09627
  4. Cited By
One Size Fits All: Can We Train One Denoiser for All Noise Levels?

One Size Fits All: Can We Train One Denoiser for All Noise Levels?

19 May 2020
Abhiram Gnanasambandam
Stanley H. Chan
    OOD
ArXivPDFHTML

Papers citing "One Size Fits All: Can We Train One Denoiser for All Noise Levels?"

6 / 6 papers shown
Title
Pivotal Auto-Encoder via Self-Normalizing ReLU
Pivotal Auto-Encoder via Self-Normalizing ReLU
Nelson Goldenstein
Jeremias Sulam
Yaniv Romano
36
2
0
23 Jun 2024
A Scalable Training Strategy for Blind Multi-Distribution Noise Removal
A Scalable Training Strategy for Blind Multi-Distribution Noise Removal
Kevin Zhang
Sakshum Kulshrestha
Christopher A. Metzler
OOD
30
1
0
30 Oct 2023
Variational Deep Image Restoration
Variational Deep Image Restoration
Jae Woong Soh
N. Cho
SupR
54
39
0
03 Jul 2022
Noise2Recon: Enabling Joint MRI Reconstruction and Denoising with
  Semi-Supervised and Self-Supervised Learning
Noise2Recon: Enabling Joint MRI Reconstruction and Denoising with Semi-Supervised and Self-Supervised Learning
Arjun D Desai
Batu Mehmet Ozturkler
Christopher M. Sandino
R. Boutin
M. Willis
S. Vasanawala
B. Hargreaves
Christopher Ré
John M. Pauly
Akshay S. Chaudhari
29
3
0
30 Sep 2021
Variational Deep Image Denoising
Variational Deep Image Denoising
Jae Woong Soh
N. Cho
OOD
13
1
0
02 Apr 2021
Uncertainty-aware Generalized Adaptive CycleGAN
Uncertainty-aware Generalized Adaptive CycleGAN
Uddeshya Upadhyay
Yanbei Chen
Zeynep Akata
24
6
0
23 Feb 2021
1