ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09619
  4. Cited By
Identifying Statistical Bias in Dataset Replication

Identifying Statistical Bias in Dataset Replication

19 May 2020
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Jacob Steinhardt
A. Madry
ArXivPDFHTML

Papers citing "Identifying Statistical Bias in Dataset Replication"

21 / 21 papers shown
Title
Revisiting Data Auditing in Large Vision-Language Models
Revisiting Data Auditing in Large Vision-Language Models
Hongyu Zhu
Sichu Liang
Wei Wang
Boheng Li
Tongxin Yuan
Fangqi Li
Shilin Wang
Zhuosheng Zhang
VLM
224
0
0
25 Apr 2025
Blind Baselines Beat Membership Inference Attacks for Foundation Models
Blind Baselines Beat Membership Inference Attacks for Foundation Models
Debeshee Das
Jie Zhang
Florian Tramèr
MIALM
85
28
1
23 Jun 2024
What Does Softmax Probability Tell Us about Classifiers Ranking Across
  Diverse Test Conditions?
What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
Weijie Tu
Weijian Deng
Liang Zheng
Tom Gedeon
40
0
0
14 Jun 2024
A Decade's Battle on Dataset Bias: Are We There Yet?
A Decade's Battle on Dataset Bias: Are We There Yet?
Zhuang Liu
Kaiming He
44
28
0
13 Mar 2024
Leveraging Human-Machine Interactions for Computer Vision Dataset
  Quality Enhancement
Leveraging Human-Machine Interactions for Computer Vision Dataset Quality Enhancement
Esla Timothy Anzaku
Hyesoo Hong
Jin-Woo Park
Wonjun Yang
Kangmin Kim
Jongbum Won
Deshika Vinoshani Kumari Herath
Arnout Van Messem
W. D. Neve
20
0
0
31 Jan 2024
Describing Differences in Image Sets with Natural Language
Describing Differences in Image Sets with Natural Language
Lisa Dunlap
Yuhui Zhang
Xiaohan Wang
Ruiqi Zhong
Trevor Darrell
Jacob Steinhardt
Joseph E. Gonzalez
Serena Yeung-Levy
CoGe
VLM
32
30
0
05 Dec 2023
Quantitatively Measuring and Contrastively Exploring Heterogeneity for
  Domain Generalization
Quantitatively Measuring and Contrastively Exploring Heterogeneity for Domain Generalization
Yunze Tong
Junkun Yuan
Min Zhang
Di-hua Zhu
Keli Zhang
Fei Wu
Kun Kuang
36
7
0
25 May 2023
Dataset Interfaces: Diagnosing Model Failures Using Controllable
  Counterfactual Generation
Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation
Joshua Vendrow
Saachi Jain
Logan Engstrom
A. Madry
OOD
32
34
0
15 Feb 2023
Diverse, Difficult, and Odd Instances (D2O): A New Test Set for Object
  Classification
Diverse, Difficult, and Odd Instances (D2O): A New Test Set for Object Classification
Ali Borji
VLM
37
0
0
29 Jan 2023
A Siren Song of Open Source Reproducibility
A Siren Song of Open Source Reproducibility
Edward Raff
Andrew L. Farris
16
9
0
09 Apr 2022
A Framework for Cluster and Classifier Evaluation in the Absence of
  Reference Labels
A Framework for Cluster and Classifier Evaluation in the Absence of Reference Labels
R. Joyce
Edward Raff
Charles K. Nicholas
43
16
0
23 Sep 2021
RobustNav: Towards Benchmarking Robustness in Embodied Navigation
RobustNav: Towards Benchmarking Robustness in Embodied Navigation
Prithvijit Chattopadhyay
Judy Hoffman
Roozbeh Mottaghi
Aniruddha Kembhavi
25
55
0
08 Jun 2021
3DB: A Framework for Debugging Computer Vision Models
3DB: A Framework for Debugging Computer Vision Models
Guillaume Leclerc
Hadi Salman
Andrew Ilyas
Sai H. Vemprala
Logan Engstrom
...
Pengchuan Zhang
Shibani Santurkar
Greg Yang
Ashish Kapoor
A. Madry
40
40
0
07 Jun 2021
Optimism in the Face of Adversity: Understanding and Improving Deep
  Learning through Adversarial Robustness
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
On Robustness and Transferability of Convolutional Neural Networks
On Robustness and Transferability of Convolutional Neural Networks
Josip Djolonga
Jessica Yung
Michael Tschannen
Rob Romijnders
Lucas Beyer
...
D. Moldovan
Sylvain Gelly
N. Houlsby
Xiaohua Zhai
Mario Lucic
OOD
13
154
0
16 Jul 2020
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
42
463
0
30 Jun 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
116
1,672
0
29 Jun 2020
Active Online Learning with Hidden Shifting Domains
Active Online Learning with Hidden Shifting Domains
Yining Chen
Haipeng Luo
Tengyu Ma
Chicheng Zhang
31
5
0
25 Jun 2020
Are we done with ImageNet?
Are we done with ImageNet?
Lucas Beyer
Olivier J. Hénaff
Alexander Kolesnikov
Xiaohua Zhai
Aaron van den Oord
VLM
19
397
0
12 Jun 2020
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
86
1,422
0
16 Jul 2019
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,842
0
08 Jul 2016
1