ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09512
  4. Cited By
Applying Genetic Programming to Improve Interpretability in Machine
  Learning Models

Applying Genetic Programming to Improve Interpretability in Machine Learning Models

18 May 2020
Leonardo Augusto Ferreira
F. G. Guimarães
Rodrigo C. P. Silva
ArXivPDFHTML

Papers citing "Applying Genetic Programming to Improve Interpretability in Machine Learning Models"

10 / 10 papers shown
Title
Unveiling the Decision-Making Process in Reinforcement Learning with
  Genetic Programming
Unveiling the Decision-Making Process in Reinforcement Learning with Genetic Programming
Manuel Eberhardinger
Florian Rupp
Johannes Maucher
S. Maghsudi
38
0
0
20 Jul 2024
Semantically Rich Local Dataset Generation for Explainable AI in
  Genomics
Semantically Rich Local Dataset Generation for Explainable AI in Genomics
Pedro Barbosa
Rosina Savisaar
Alcides Fonseca
14
0
0
03 Jul 2024
Evolutionary Computation and Explainable AI: A Roadmap to Transparent
  Intelligent Systems
Evolutionary Computation and Explainable AI: A Roadmap to Transparent Intelligent Systems
Ryan Zhou
Jaume Bacardit
Alexander Brownlee
Stefano Cagnoni
Martin Fyvie
Giovanni Iacca
John Mccall
Niki van Stein
David Walker
Ting-Kuei Hu
44
0
0
12 Jun 2024
Interpretability in Symbolic Regression: a benchmark of Explanatory
  Methods using the Feynman data set
Interpretability in Symbolic Regression: a benchmark of Explanatory Methods using the Feynman data set
Guilherme Seidyo Imai Aldeia
Fabrício Olivetti de França
37
10
0
08 Apr 2024
Function Class Learning with Genetic Programming: Towards Explainable
  Meta Learning for Tumor Growth Functionals
Function Class Learning with Genetic Programming: Towards Explainable Meta Learning for Tumor Growth Functionals
E. Sijben
Jeroen Jansen
Peter A. N. Bosman
Tanja Alderliesten
34
1
0
19 Feb 2024
Explainable Benchmarking for Iterative Optimization Heuristics
Explainable Benchmarking for Iterative Optimization Heuristics
Niki van Stein
Diederick Vermetten
Anna V. Kononova
Thomas Bäck
37
12
0
31 Jan 2024
Evolutionary approaches to explainable machine learning
Evolutionary approaches to explainable machine learning
Ryan Zhou
Ting-Kuei Hu
35
7
0
23 Jun 2023
Differentiable Genetic Programming for High-dimensional Symbolic
  Regression
Differentiable Genetic Programming for High-dimensional Symbolic Regression
Peng Zeng
Xiaotian Song
Andrew Lensen
Yuwei Ou
Yanan Sun
Mengjie Zhang
Jiancheng Lv
39
2
0
18 Apr 2023
Exploring Hidden Semantics in Neural Networks with Symbolic Regression
Exploring Hidden Semantics in Neural Networks with Symbolic Regression
Yuanzhen Luo
Qiang Lu
Xilei Hu
Jake Luo
Zhiguang Wang
13
0
0
22 Apr 2022
Multi-modal multi-objective model-based genetic programming to find
  multiple diverse high-quality models
Multi-modal multi-objective model-based genetic programming to find multiple diverse high-quality models
E. Sijben
Tanja Alderliesten
Peter A. N. Bosman
21
5
0
24 Mar 2022
1