ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09448
  4. Cited By
The Skincare project, an interactive deep learning system for
  differential diagnosis of malignant skin lesions. Technical Report

The Skincare project, an interactive deep learning system for differential diagnosis of malignant skin lesions. Technical Report

19 May 2020
Daniel Sonntag
Fabrizio Nunnari
H. Profitlich
ArXivPDFHTML

Papers citing "The Skincare project, an interactive deep learning system for differential diagnosis of malignant skin lesions. Technical Report"

5 / 5 papers shown
Title
Fine-tuning of explainable CNNs for skin lesion classification based on
  dermatologists' feedback towards increasing trust
Fine-tuning of explainable CNNs for skin lesion classification based on dermatologists' feedback towards increasing trust
Md Abdul Kadir
Fabrizio Nunnari
Daniel Sonntag
FAtt
16
1
0
03 Apr 2023
DRG-Net: Interactive Joint Learning of Multi-lesion Segmentation and
  Classification for Diabetic Retinopathy Grading
DRG-Net: Interactive Joint Learning of Multi-lesion Segmentation and Classification for Diabetic Retinopathy Grading
Hasan Md Tusfiqur
D. M. Nguyen
M. T. N. Truong
T. A. Nguyen
Binh Duc Nguyen
...
H. Profitlich
Ngoc T. T. Than
Ngan Le
P. Xie
Daniel Sonntag
MedIm
32
8
0
30 Dec 2022
Skin Cancer Diagnostics with an All-Inclusive Smartphone Application
Skin Cancer Diagnostics with an All-Inclusive Smartphone Application
Upender Kalwa
Christopher Legner
Taejoon Kong
Santosh Pandey
15
35
0
25 May 2022
A Competitive Deep Neural Network Approach for the ImageCLEFmed Caption
  2020 Task
A Competitive Deep Neural Network Approach for the ImageCLEFmed Caption 2020 Task
M. Kalimuthu
Fabrizio Nunnari
Daniel Sonntag
MedIm
32
7
0
11 Jul 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1