ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.09296
  4. Cited By
SINVAD: Search-based Image Space Navigation for DNN Image Classifier
  Test Input Generation

SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation

19 May 2020
Sungmin Kang
R. Feldt
S. Yoo
    AAML
ArXivPDFHTML

Papers citing "SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation"

12 / 12 papers shown
Title
Towards Assessing Deep Learning Test Input Generators
Towards Assessing Deep Learning Test Input Generators
Seif Mzoughi
Ahmed Hajyahmed
Mohamed Elshafei
Foutse Khomh anb Diego Elias Costa
D. Costa
AAML
37
0
0
03 Apr 2025
When and Why Test Generators for Deep Learning Produce Invalid Inputs:
  an Empirical Study
When and Why Test Generators for Deep Learning Produce Invalid Inputs: an Empirical Study
Vincenzo Riccio
Paolo Tonella
AAML
18
29
0
21 Dec 2022
Generating and Detecting True Ambiguity: A Forgotten Danger in DNN
  Supervision Testing
Generating and Detecting True Ambiguity: A Forgotten Danger in DNN Supervision Testing
Michael Weiss
A. Gómez
Paolo Tonella
AAML
13
6
0
21 Jul 2022
Hierarchical Distribution-Aware Testing of Deep Learning
Hierarchical Distribution-Aware Testing of Deep Learning
Wei Huang
Xingyu Zhao
Alec Banks
V. Cox
Xiaowei Huang
OOD
AAML
34
10
0
17 May 2022
A Software Engineering Perspective on Engineering Machine Learning
  Systems: State of the Art and Challenges
A Software Engineering Perspective on Engineering Machine Learning Systems: State of the Art and Challenges
G. Giray
25
120
0
14 Dec 2020
Arachne: Search Based Repair of Deep Neural Networks
Arachne: Search Based Repair of Deep Neural Networks
Jeongju Sohn
Sungmin Kang
S. Yoo
KELM
22
44
0
28 Dec 2019
Constructing Unrestricted Adversarial Examples with Generative Models
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
185
302
0
21 May 2018
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
292
10,613
0
19 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,835
0
08 Jul 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
233
2,547
0
25 Jan 2016
1