Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.09042
Cited By
BLAZE: Blazing Fast Privacy-Preserving Machine Learning
18 May 2020
A. Patra
Ajith Suresh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BLAZE: Blazing Fast Privacy-Preserving Machine Learning"
22 / 22 papers shown
Title
Flash: A Hybrid Private Inference Protocol for Deep CNNs with High Accuracy and Low Latency on CPU
H. Roh
Jinsu Yeo
Yeongil Ko
Gu-Yeon Wei
David Brooks
Woo-Seok Choi
89
2
0
20 Jan 2025
State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey
Chaoyu Zhang
Shaoyu Li
AILaw
66
3
0
25 Feb 2024
CompactTag: Minimizing Computation Overheads in Actively-Secure MPC for Deep Neural Networks
Yongqin Wang
Pratik Sarkar
Nishat Koti
A. Patra
Murali Annavaram
27
2
0
08 Nov 2023
Bicoptor 2.0: Addressing Challenges in Probabilistic Truncation for Enhanced Privacy-Preserving Machine Learning
Lijing Zhou
Qingrui Song
Su Zhang
Ziyu Wang
Xianggui Wang
Yong-Lu Li
11
4
0
10 Sep 2023
ExTRUST: Reducing Exploit Stockpiles with a Privacy-Preserving Depletion System for Inter-State Relationships
Thomas Reinhold
Philip D. . Kuehn
Daniel Gunther
T. Schneider
Christian A. Reuter
16
1
0
01 Jun 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
84
48
0
21 Feb 2023
Threats, Vulnerabilities, and Controls of Machine Learning Based Systems: A Survey and Taxonomy
Yusuke Kawamoto
Kazumasa Miyake
K. Konishi
Y. Oiwa
29
4
0
18 Jan 2023
Hercules: Boosting the Performance of Privacy-preserving Federated Learning
Guowen Xu
Xingshuo Han
Shengmin Xu
Tianwei Zhang
Hongwei Li
Xinyi Huang
R. Deng
FedML
35
16
0
11 Jul 2022
MPClan: Protocol Suite for Privacy-Conscious Computations
Nishat Koti
S. Patil
A. Patra
Ajith Suresh
24
18
0
24 Jun 2022
Towards Practical Privacy-Preserving Solution for Outsourced Neural Network Inference
Pinglan Liu
Wensheng Zhang
FedML
19
3
0
06 Jun 2022
Privacy-Preserving Epidemiological Modeling on Mobile Graphs
Daniel Gunther
Marco Holz
B. Judkewitz
Helen Mollering
Benny Pinkas
T. Schneider
Ajith Suresh
34
4
0
01 Jun 2022
SCOTCH: An Efficient Secure Computation Framework for Secure Aggregation
Yash More
Prashanthi Ramachandran
Priyam Panda
A. Mondal
Harpreet Virk
Debayan Gupta
FedML
27
11
0
19 Jan 2022
CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at Scale
Karthik Garimella
N. Jha
Zahra Ghodsi
S. Garg
Brandon Reagen
33
3
0
04 Nov 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
40
16
0
20 Sep 2021
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
BDL
FedML
57
184
0
22 Apr 2021
Multi-party computation enables secure polynomial control based solely on secret-sharing
Sebastian Schlor
Michael Hertneck
Stefan Wildhagen
Frank Allgöwer
30
9
0
30 Mar 2021
Secrecy: Secure collaborative analytics on secret-shared data
J. Liagouris
Vasiliki Kalavri
Muhammad Faisal
Mayank Varia
21
19
0
01 Feb 2021
Confidential Machine Learning on Untrusted Platforms: A Survey
Sagar Sharma
Keke Chen
FedML
22
15
0
15 Dec 2020
POSEIDON: Privacy-Preserving Federated Neural Network Learning
Sinem Sav
Apostolos Pyrgelis
J. Troncoso-Pastoriza
D. Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean-Pierre Hubaux
FedML
11
153
0
01 Sep 2020
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing
T. Ryffel
Pierre Tholoniat
D. Pointcheval
Francis R. Bach
FedML
28
94
0
08 Jun 2020
SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning
Nishat Koti
Mahak Pancholi
A. Patra
Ajith Suresh
14
138
0
20 May 2020
FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning
Sameer Wagh
Shruti Tople
Fabrice Benhamouda
E. Kushilevitz
Prateek Mittal
T. Rabin
FedML
33
295
0
05 Apr 2020
1