ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.08334
  4. Cited By
Marginal likelihood computation for model selection and hypothesis
  testing: an extensive review

Marginal likelihood computation for model selection and hypothesis testing: an extensive review

17 May 2020
F. Llorente
Luca Martino
D. Delgado
J. Lopez-Santiago
ArXivPDFHTML

Papers citing "Marginal likelihood computation for model selection and hypothesis testing: an extensive review"

32 / 32 papers shown
Title
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
138
13
0
03 Jan 2025
Adaptive posterior distributions for uncertainty analysis of covariance matrices in Bayesian inversion problems for multioutput signals
E. Curbelo
Luca Martino
F. Llorente
D. Delgado-Gomez
92
1
0
03 Jan 2025
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
46
154
0
25 Jul 2021
Compressed Monte Carlo with application in particle filtering
Compressed Monte Carlo with application in particle filtering
Luca Martino
Victor Elvira
36
36
0
18 Jul 2021
A Joint introduction to Gaussian Processes and Relevance Vector Machines
  with Connections to Kalman filtering and other Kernel Smoothers
A Joint introduction to Gaussian Processes and Relevance Vector Machines with Connections to Kalman filtering and other Kernel Smoothers
Luca Martino
Jesse Read
BDL
GP
29
55
0
19 Sep 2020
Minimum Description Length Revisited
Minimum Description Length Revisited
Peter Grünwald
Teemu Roos
105
66
0
21 Aug 2019
On the marginal likelihood and cross-validation
On the marginal likelihood and cross-validation
Edwin Fong
Chris Holmes
UQCV
92
110
0
21 May 2019
Markov Chain Importance Sampling -- a highly efficient estimator for
  MCMC
Markov Chain Importance Sampling -- a highly efficient estimator for MCMC
Ingmar Schuster
I. Klebanov
57
24
0
18 May 2018
A Review of Multiple Try MCMC algorithms for Signal Processing
A Review of Multiple Try MCMC algorithms for Signal Processing
Luca Martino
41
81
0
27 Jan 2018
On the correspondence between thermodynamics and inference
On the correspondence between thermodynamics and inference
Colin H. LaMont
Paul A. Wiggins
31
26
0
05 Jun 2017
Metropolis Sampling
Metropolis Sampling
Luca Martino
Victor Elvira
52
25
0
15 Apr 2017
Group Importance Sampling for Particle Filtering and MCMC
Group Importance Sampling for Particle Filtering and MCMC
Luca Martino
Victor Elvira
G. Camps-Valls
107
66
0
10 Apr 2017
Cooperative Parallel Particle Filters for online model selection and
  applications to Urban Mobility
Cooperative Parallel Particle Filters for online model selection and applications to Urban Mobility
Luca Martino
Jesse Read
Victor Elvira
F. Louzada
47
130
0
25 Sep 2016
Heretical Multiple Importance Sampling
Heretical Multiple Importance Sampling
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
52
38
0
15 Sep 2016
Effective Sample Size for Importance Sampling based on discrepancy
  measures
Effective Sample Size for Importance Sampling based on discrepancy measures
Luca Martino
Victor Elvira
F. Louzada
104
180
0
10 Feb 2016
Generalized Multiple Importance Sampling
Generalized Multiple Importance Sampling
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
53
145
0
10 Nov 2015
Practical Bayesian model evaluation using leave-one-out cross-validation
  and WAIC
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
98
4,036
0
16 Jul 2015
Efficient Multiple Importance Sampling Estimators
Efficient Multiple Importance Sampling Estimators
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
54
75
0
20 May 2015
Layered Adaptive Importance Sampling
Layered Adaptive Importance Sampling
Luca Martino
Victor Elvira
D. Luengo
J. Corander
43
108
0
18 May 2015
Comparison of Bayesian predictive methods for model selection
Comparison of Bayesian predictive methods for model selection
Juho Piironen
Aki Vehtari
58
279
0
30 Mar 2015
Nested Sequential Monte Carlo Methods
Nested Sequential Monte Carlo Methods
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
421
84
0
09 Feb 2015
Bayesian Evidence and Model Selection
Bayesian Evidence and Model Selection
K. Knuth
Michael Habeck
N. Malakar
Asim M. Mubeen
Ben Placek
BDL
46
96
0
11 Nov 2014
Vertical-likelihood Monte Carlo
Vertical-likelihood Monte Carlo
Nicholas G. Polson
James G. Scott
37
15
0
11 Sep 2014
Improving power posterior estimation of statistical evidence
Improving power posterior estimation of statistical evidence
Nial Friel
M. Hurn
J. Wyse
56
68
0
14 Sep 2012
Improved Adaptive Rejection Metropolis Sampling Algorithms
Improved Adaptive Rejection Metropolis Sampling Algorithms
Luca Martino
Jesse Read
D. Luengo
52
86
0
24 May 2012
On the flexibility of the design of Multiple Try Metropolis schemes
On the flexibility of the design of Multiple Try Metropolis schemes
Luca Martino
Jesse Read
72
61
0
03 Jan 2012
A multi-point Metropolis scheme with generic weight functions
A multi-point Metropolis scheme with generic weight functions
Luca Martino
V. D. Olmo
Jesse Read
60
34
0
17 Dec 2011
Computing the Bayesian Factor from a Markov chain Monte Carlo Simulation
  of the Posterior Distribution
Computing the Bayesian Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution
M. Weinberg
96
64
0
09 Nov 2009
Importance sampling methods for Bayesian discrimination between embedded
  models
Importance sampling methods for Bayesian discrimination between embedded models
Jean-Michel Marin
Christian P. Robert
72
60
0
13 Oct 2009
Computational methods for Bayesian model choice
Computational methods for Bayesian model choice
Christian P. Robert
Darren Wraith
94
74
0
29 Jul 2009
Adaptive Multiple Importance Sampling
Adaptive Multiple Importance Sampling
J. Cornuet
Jean-Michel Marin
Antonietta Mira
Christian P. Robert
86
264
0
07 Jul 2009
Properties of Nested Sampling
Properties of Nested Sampling
Nicolas Chopin
Christian P. Robert
104
116
0
25 Jan 2008
1