Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.07404
Cited By
Think Too Fast Nor Too Slow: The Computational Trade-off Between Planning And Reinforcement Learning
15 May 2020
Thomas M. Moerland
Anna Deichler
S. Baldi
Joost Broekens
Catholijn M. Jonker
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Think Too Fast Nor Too Slow: The Computational Trade-off Between Planning And Reinforcement Learning"
8 / 8 papers shown
Title
Online Planning with Lookahead Policies
Yonathan Efroni
Mohammad Ghavamzadeh
Shie Mannor
33
5
0
10 Sep 2019
Benchmarking Model-Based Reinforcement Learning
Tingwu Wang
Xuchan Bao
I. Clavera
Jerrick Hoang
Yeming Wen
Eric D. Langlois
Matthew Shunshi Zhang
Guodong Zhang
Pieter Abbeel
Jimmy Ba
OffRL
68
363
0
03 Jul 2019
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
224
1,281
0
30 May 2018
Beyond the One Step Greedy Approach in Reinforcement Learning
Yonathan Efroni
Gal Dalal
B. Scherrer
Shie Mannor
OffRL
83
50
0
10 Feb 2018
Thinking Fast and Slow with Deep Learning and Tree Search
Thomas W. Anthony
Zheng Tian
David Barber
100
396
0
23 May 2017
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
223
5,077
0
05 Jun 2016
Learning to Search Better Than Your Teacher
Kai-Wei Chang
A. Krishnamurthy
Alekh Agarwal
Hal Daumé
John Langford
OffRL
52
231
0
08 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
1