ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.06979
  4. Cited By
A deep neural network for molecular wave functions in quasi-atomic
  minimal basis representation

A deep neural network for molecular wave functions in quasi-atomic minimal basis representation

11 May 2020
M. Gastegger
A. McSloy
M. Luya
Kristof T. Schütt
R. Maurer
ArXivPDFHTML

Papers citing "A deep neural network for molecular wave functions in quasi-atomic minimal basis representation"

15 / 15 papers shown
Title
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
Self-Consistency Training for Density-Functional-Theory Hamiltonian
  Prediction
Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction
He Zhang
Chang-Shu Liu
Zun Wang
Xinran Wei
Siyuan Liu
Nanning Zheng
Bin Shao
Tie-Yan Liu
48
4
0
14 Mar 2024
Universal Machine Learning Kohn-Sham Hamiltonian for Materials
Universal Machine Learning Kohn-Sham Hamiltonian for Materials
Yang Zhong
Hongyu Yu
Ji-Hui Yang
Xingyu Guo
Hongjun Xiang
X. Gong
20
17
0
14 Feb 2024
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
  Wavefunctions
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
35
5
0
15 Jul 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
18
20
0
15 Jun 2023
Towards a Foundation Model for Neural Network Wavefunctions
Towards a Foundation Model for Neural Network Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
32
8
0
17 Mar 2023
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
50
373
0
05 Aug 2022
Electronic-structure properties from atom-centered predictions of the
  electron density
Electronic-structure properties from atom-centered predictions of the electron density
Andrea Grisafi
Alan M Lewis
M. Rossi
Michele Ceriotti
17
20
0
28 Jun 2022
Accurate Machine Learned Quantum-Mechanical Force Fields for
  Biomolecular Simulations
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
40
18
0
17 May 2022
SE(3)-equivariant prediction of molecular wavefunctions and electronic
  densities
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
Oliver T. Unke
Mihail Bogojeski
M. Gastegger
Mario Geiger
Tess E. Smidt
Klaus-Robert Muller
31
86
0
04 Jun 2021
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
34
888
0
14 Oct 2020
Convergence to the fixed-node limit in deep variational Monte Carlo
Convergence to the fixed-node limit in deep variational Monte Carlo
Zeno Schätzle
J. Hermann
Frank Noé
11
17
0
11 Oct 2020
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
19
257
0
10 Jul 2020
Machine learning and excited-state molecular dynamics
Machine learning and excited-state molecular dynamics
Julia Westermayr
P. Marquetand
AI4CE
11
56
0
28 May 2020
Deep neural network solution of the electronic Schrödinger equation
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
149
448
0
16 Sep 2019
1