ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.06209
  4. Cited By
On the uncertainty of self-supervised monocular depth estimation

On the uncertainty of self-supervised monocular depth estimation

13 May 2020
Matteo Poggi
Filippo Aleotti
Fabio Tosi
S. Mattoccia
    UQCV
    MDE
ArXivPDFHTML

Papers citing "On the uncertainty of self-supervised monocular depth estimation"

12 / 62 papers shown
Title
Fine-grained Semantics-aware Representation Enhancement for
  Self-supervised Monocular Depth Estimation
Fine-grained Semantics-aware Representation Enhancement for Self-supervised Monocular Depth Estimation
Hyun-Joo Jung
Eunhyeok Park
S. Yoo
MDE
36
108
0
19 Aug 2021
Robust Mutual Learning for Semi-supervised Semantic Segmentation
Robust Mutual Learning for Semi-supervised Semantic Segmentation
Pan Zhang
Bo Zhang
Ting Zhang
Dong Chen
Fang Wen
23
17
0
01 Jun 2021
Bayesian Deep Basis Fitting for Depth Completion with Uncertainty
Bayesian Deep Basis Fitting for Depth Completion with Uncertainty
Chao Qu
Wenxin Liu
Camillo J Taylor
UQCV
BDL
22
31
0
29 Mar 2021
Revisiting Self-Supervised Monocular Depth Estimation
Revisiting Self-Supervised Monocular Depth Estimation
Ue-Hwan Kim
Jong-Hwan Kim
SSL
MDE
36
7
0
23 Mar 2021
Variational Monocular Depth Estimation for Reliability Prediction
Variational Monocular Depth Estimation for Reliability Prediction
Noriaki Hirose
S. Taguchi
Keisuke Kawano
Satoshi Koide
MDE
34
4
0
24 Nov 2020
Approaches, Challenges, and Applications for Deep Visual Odometry:
  Toward to Complicated and Emerging Areas
Approaches, Challenges, and Applications for Deep Visual Odometry: Toward to Complicated and Emerging Areas
Ke Min Wang
Sai Ma
Junlan Chen
Fan Ren
18
81
0
06 Sep 2020
Real-time single image depth perception in the wild with handheld
  devices
Real-time single image depth perception in the wild with handheld devices
Filippo Aleotti
Giulio Zaccaroni
Luca Bartolomei
Matteo Poggi
Fabio Tosi
S. Mattoccia
MDE
32
41
0
10 Jun 2020
Distilled Semantics for Comprehensive Scene Understanding from Videos
Distilled Semantics for Comprehensive Scene Understanding from Videos
Fabio Tosi
Filippo Aleotti
Pierluigi Zama Ramirez
Matteo Poggi
Samuele Salti
Luigi Di Stefano
S. Mattoccia
MDE
19
76
0
31 Mar 2020
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity
  as a Surrogate
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate
Lu Mi
Hao Wang
Yonglong Tian
Hao He
Nir Shavit
UQCV
21
30
0
28 Sep 2019
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
200
1,708
0
06 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
Previous
12